High-order efficient numerical method for solving a generalized fractional Oldroyd-B fluid model

被引:0
作者
Bo Yu
机构
[1] Shandong University,School of Mathematics and Statistics
来源
Journal of Applied Mathematics and Computing | 2021年 / 66卷
关键词
Fractional Oldroyd-B fluid model; High-order numerical method; Stability; Convergence; 65M06; 65M12; 65M15;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the high-order efficient numerical method with the corresponding stability and convergence analysis for the generalized fractional Oldroyd-B fluid model. Firstly, a high-order compact finite difference scheme is derived with accuracy Oτmin{3-γ,2-α}+h4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\left( \tau ^{\min {\{3-\gamma ,2-\alpha }\}}+h^{4}\right) $$\end{document}, where γ∈(1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \in (1,2)$$\end{document} and α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document} are the orders of the time fractional derivatives. Then, by means of a new inner product, the unconditional stability and convergence in the maximum norm of the derived high-order numerical method have been discussed rigorously using the energy method. Finally, numerical experiments are presented to test the convergence order in the temporal and spatial direction, respectively. To precisely demonstrate the computational efficiency of the derived high-order numerical method, the maximum norm error and the CPU time are measured in contrast with the second-order finite difference scheme for the same temporal grid size. Additionally, the derived high-order numerical method has been applied to solve and analyze the flow problem of an incompressible Oldroyd-B fluid with fractional derivative model bounded by two infinite parallel rigid plates.
引用
收藏
页码:749 / 768
页数:19
相关论文
共 61 条
[1]  
Cui MR(2009)Compact finite difference method for the fractional diffusion equation J. Comput. Phys. 228 7792-7804
[2]  
Dehghan M(2015)Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations J. Comput. Appl. Math. 290 174-195
[3]  
Safarpoor M(2010)A compact difference scheme for the fractional diffusion-wave equation Appl. Math. Model. 34 2998-3009
[4]  
Abbaszadeh M(2018)Novel numerical analysis of multi-term time fractional viscoelastic non-Newtonian fluid models for simulating unsteady MHD Couette flow of a generalized Oldroyd-B fluid Fract. Calc. Appl. Anal. 21 1073-1103
[5]  
Du R(2017)Numerical methods and analysis for simulating the flow of a generalized Oldroyd-B fluid between two infinite parallel rigid plates Int. J. Heat Mass Transf. 115 1309-1320
[6]  
Cao W(2011)A compact finite difference scheme for the fractional sub-diffusion equations J. Comput. Phys. 230 586-595
[7]  
Sun ZZ(2009)Some accelerated flows for a generalized Oldroyd-B fluid Nonlinear Anal. Real World Appl. 10 980-991
[8]  
Feng L(2019)Galerkin FEM for a time-fractional Oldroyd-B fluid problem Adv. Comput. Math. 45 1005-1029
[9]  
Liu F(2000)The random walk’s guide to a nomalous diffusion: a fractional dynamics approach Phys. Rep. 339 1-77
[10]  
Turner I(2004)The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics J. Physiol. Anthropol. 37 R161-R208