Construction of self-orthogonal Z2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{2^k}$$\end{document}-codes

被引:0
作者
Sara Ban
Sanja Rukavina
机构
[1] University of Rijeka,Faculty of Mathematics
关键词
Self-orthogonal code; Cyclic code; -code; Boolean function; Bent function; 94B05; 94B15; 06E30;
D O I
10.1007/s10623-023-01340-3
中图分类号
学科分类号
摘要
In this paper we give three constructions of cyclic self-orthogonal codes over Z2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{2^k}$$\end{document}, for k≥3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 3,$$\end{document} from Boolean functions on n variables. The first construction for each k, 3≤k≤n,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\le k\le n,$$\end{document} yields a self-orthogonal Z2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{2^k}$$\end{document}-code of length 2n+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{n+2}$$\end{document} with all Euclidean weights divisible by 2k+1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{k+1}.$$\end{document} In the remaining two constructions, for each even n and k≥3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 3,$$\end{document} we generate a self-orthogonal Z2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{2^k}$$\end{document}-code of length 2n+1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{n+1}.$$\end{document} All Euclidean weights in the constructed code are divisible by 22k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{2k-1}$$\end{document} or 2k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{k+1}$$\end{document}, depending on which of the two constructions is used.
引用
收藏
页码:1243 / 1250
页数:7
相关论文
共 46 条
[1]  
Abualrub T(2014)-additive cyclic codes IEEE Trans. Inform. Theory 60 1508-1514
[2]  
Siap I(2022)Type IV-II codes over Australas. J. Combin. 84 341-356
[3]  
Aydin N(1999) constructed from generalized bent functions IEEE Trans. Inf. Theory 45 1194-1205
[4]  
Ban S(2019)Type II codes, even unimodular lattices and invariant rings IEEE Trans. Inform. Theory 65 7533-7541
[5]  
Rukavina S(2006)Bent vectorial functions, codes and designs Des. Codes Cryptogr. 39 127-153
[6]  
Bannai E(1994)Cyclic codes over IEEE Trans. Inform. Theory 40 301-319
[7]  
Dougherty ST(1991) of even length Des. Codes Cryptogr. 1 247-253
[8]  
Harada M(1992)The J. Comb. Theory Ser. A 59 40-50
[9]  
Oura M(2022)-linearity of Kerdock, Preparata, Goethals and related codes J. Korean Math. Soc. 59 193-204
[10]  
Ding C(2022)Exponential number of quasi-symmetric SDP designs and codes meeting the Grey–Rankin bound Finite Fields Appl. 78 300-305