Oscillation constants for half-linear difference equations with coefficients having mean values

被引:0
作者
Petr Hasil
Michal Veselý
机构
[1] Masaryk University,Department of Mathematics and Statistics
来源
Advances in Difference Equations | / 2015卷
关键词
half-linear difference equation; oscillation theory; conditional oscillation; oscillation constant; Euler equation; Riccati technique; 39A10; 39A21;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate second order half-linear Euler type difference equations whose coefficients have mean values. We show that these equations are conditionally oscillatory and we explicitly identify the corresponding oscillation constants given by the coefficients. Our results generalize the known ones concerning equations with positive constant, periodic, or (asymptotically) almost periodic coefficients. We also demonstrate the obtained results on examples and we give corollaries. In particular, we get new results even for linear difference equations.
引用
收藏
相关论文
共 34 条
[1]  
Naĭman PB(1959)The set of isolated points of increase of the spectral function pertaining to a limit-constant Jacobi matrix Izv. Vysš. Učebn. Zaved., Mat. 1 129-135
[2]  
Luef F(2004)On the finiteness of the number of eigenvalues of Jacobi operators below the essential spectrum J. Differ. Equ. Appl. 10 299-307
[3]  
Teschl G(2012)Critical oscillation constant for difference equations with almost periodic coefficients Abstr. Appl. Anal. 2012 409-435
[4]  
Hasil P(2013)Oscillation and non-oscillation of asymptotically almost periodic half-linear difference equations Abstr. Appl. Anal. 2013 121-144
[5]  
Veselý M(1893)Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen Math. Ann. 42 2367-2374
[6]  
Veselý M(1998)Perturbative oscillation criteria and Hardy-type inequalities Math. Nachr. 189 1305-1321
[7]  
Hasil P(1999)Oscillation of perturbed Hill equation and lower spectrum of radially periodic Schrödinger operators in the plane Proc. Am. Math. Soc. 127 3823-3848
[8]  
Kneser A(2010)On perturbations of quasiperiodic Schrödinger operators J. Differ. Equ. 249 1702-1720
[9]  
Gesztesy F(2008)Effective Prüfer angles and relative oscillation criteria J. Differ. Equ. 245 465-485
[10]  
Ünal M(2008)Relative oscillation theory for Sturm-Liouville operators extended J. Funct. Anal. 254 447-464