Linear Stability of an Elliptic Relative Equilibrium in the Spatial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-Body Problem via Index Theory

被引:0
作者
Xijun Hu
Yuwei Ou
Xiuting Tang
机构
[1] School of Mathematics,
[2] Shandong University,undefined
[3] 250100 Jinan,undefined
关键词
linear stability; elliptic relative equilibrium; Maslov-type index; spatial ; -body problem;
D O I
10.1134/S1560354723040135
中图分类号
学科分类号
摘要
It is well known that a planar central configuration of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-body problem gives rise to a solution where each particle moves in a Keplerian orbit with a common eccentricity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{e}\in[0,1)$$\end{document}. We call this solution an elliptic relative equilibrium (ERE for short). Since each particle of the ERE is always in the same plane, it is natural to regard it as a planar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-body problem. But in practical applications, it is more meaningful to consider the ERE as a spatial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-body problem (i. e., each particle belongs to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}^{3}$$\end{document}). In this paper, as a spatial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-body problem, we first decompose the linear system of ERE into two parts, the planar and the spatial part. Following the Meyer – Schmidt coordinate [19], we give an expression for the spatial part and further obtain a rigorous analytical method to study the linear stability of the spatial part by the Maslov-type index theory. As an application, we obtain stability results for some classical ERE, including the elliptic Lagrangian solution, the Euler solution and the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+n$$\end{document}-gon solution.
引用
收藏
页码:731 / 755
页数:24
相关论文
共 43 条
[1]  
olo A. and Majer, P.(2003)Ordinary Differential Operators in Hilbert Spaces and Fredholm Pairs Math. Z. 243 525-562
[2]  
Arnol’d V. I.(1967)On a Characteristic Class Entering into Conditions of Quantization Funct. Anal. Appl. 1 1-13
[3]  
Asselle L.(2022)Spectral Stability, Spectral Flow and Circular Relative Equilibria for the Newtonian J. Differential Equations 337 323-362
[4]  
Portaluri A.(1976)-Body Problem Math. Proc. Cambridge Philos. Soc. 79 71-99
[5]  
Wu L.(1994)Spectral Asymmetry and Riemannian Geometry: 3 Comm. Pure Appl. Math. 47 121-186
[6]  
Atiyah M. F.(2014)On the Maslov Index Arch. Ration. Mech. Anal. 213 993-1045
[7]  
Patodi V. K.(2015)Linear Stability of Elliptic Lagrangian Solutions of the Planar Three-Body Problem via Index Theory Arch. Ration. Mech. Anal. 216 313-357
[8]  
Singer I. M.(2013)Trace Formula for Linear Hamiltonian Systems with Its Applications to Elliptic Lagrangian Solutions Regul. Chaotic Dyn. 18 732-741
[9]  
Cappell S. E.(2016)An Estimation for the Hyperbolic Region of Elliptic Lagrangian Solutions in the Planar Three-Body Problem Comm. Math. Phys. 348 803-845
[10]  
Lee R.(2020)Collision Index and Stability of Elliptic Relative Equilibria in Planar Nonlinearity 33 1016-1045