Icosahedral galois extensions and elliptic curves

被引:0
作者
Annette Klute
机构
来源
manuscripta mathematica | 1997年 / 93卷
关键词
Modular Form; Elliptic Curve; Elliptic Curf; Galois Group; Galois Representation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the last unsolved case of the Artin Conjecture in two dimensions. Given an irreducible 2-dimensional complex representation of the absolute Galois group of a number fieldF, the Artin Conjecture states that the associatedL-series is entire. The conjecture has been proved for all cases except the icosahedral one. In this paper we construct icosahedral representations of the absolute Galois group of ℚ(√5) by means of 5-torsion points of an elliptic curve defined over ℚ. We compute the L-series explicitely as an Euler product, giving algorithms for determining the factors at the difficult primes. We also prove a formula for the conductor of the elliptic representation.
引用
收藏
页码:301 / 324
页数:23
相关论文
共 5 条
  • [1] Kloosterman H.D.(1928)Theorie der Eisensteinschen Reihen von mehreren Veränderlichen Abh. a. d. math. Seminar d. hamburgischen Universität 6 163-188
  • [2] Koike M.(1976)Congruences between cuspforms and linear representations of the Galois group Nagoya Math. J. 64 63-85
  • [3] Rogawski J.D.(1983)On Artin Invent. Math. 74 1-42
  • [4] Tunnell J.B.(1974)-functions associated to Hilbert modular forms of weight one Invent. Math. 15 259-331
  • [5] Serre J-P.(undefined)Propriétés galoisiennes des points d’ordre fini des courbes elliptiques undefined undefined undefined-undefined