Weight distribution of cyclic codes with arbitrary number of generalized Niho type zeroes

被引:0
作者
Maosheng Xiong
Nian Li
Zhengchun Zhou
Cunsheng Ding
机构
[1] The Hong Kong University of Science and Technology,Department of Mathematics
[2] Southwest Jiaotong University,School of Mathematics
[3] The Hong Kong University of Science and Technology,Department of Computer Science and Engineering
来源
Designs, Codes and Cryptography | 2016年 / 78卷
关键词
Cyclic codes; Weight distribution; Vandermonde matrix; Niho exponent; 11T71; 94B15; 11L03;
D O I
暂无
中图分类号
学科分类号
摘要
Cyclic codes are an important class of linear codes, whose weight distribution have been extensively studied. Most previous results obtained so far were for cyclic codes with no more than three zeroes. Inspired by the works of Li et al. (Sci China Math 53:3279–3286, 2010; IEEE Trans Inf Theory 60:3903–3912, 2014), we study two families of cyclic codes over Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_p$$\end{document} with arbitrary number of zeroes of generalized Niho type, more precisely C(d0,d1,…,dt)(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}_{(d_0,d_1,\ldots ,d_t)}^{(1)}}$$\end{document} (for p=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2$$\end{document}) of t+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t+1$$\end{document} zeroes, and C(d~1,…,d~t)(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}_{(\widetilde{d}_1,\ldots ,\widetilde{d}_t)}^{(2)}}$$\end{document} (for any prime p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}) of t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} zeroes for any t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}. We find that the first family has at most (2t+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2t+1)$$\end{document} non-zero weights, and the second has at most 2t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2t$$\end{document} non-zero weights. Their weight distribution are also determined in the paper.
引用
收藏
页码:713 / 730
页数:17
相关论文
empty
未找到相关数据