System of Laplace equations in a half-space with a free interface, capillary-gravitational waves, bifurcation, and symmetry

被引:0
作者
A. N. Andronov
机构
[1] Mordovia State University,
来源
Differential Equations | 2011年 / 47卷
关键词
Jacobian Matrix; Laplace Equation; Invariant Manifold; Bifurcation Problem; Free Interface;
D O I
暂无
中图分类号
学科分类号
摘要
We study the stability of branching solutions of a system of two nonlinearly perturbed Laplace equations in a half-space with two differential relations on the interface. This system describes the motion of a two-layer fluid. To construct and study the related branching systems, methods of group analysis of differential equations (RZhMat 1978 11B883K, RZhMat 1983 11A813K) and the S. Lie-L.V. Ovsyannikov technique of invariants and invariant manifolds are used.
引用
收藏
页码:758 / 763
页数:5
相关论文
共 11 条
[1]  
Twombley E.E.(1983)Bifurcating Instability of the Free Surface of a Ferrofluid SIAM J. Math. Anal. 14 736-767
[2]  
Thomas J.W.(1967)Free Convection and Branching Prikl. Mat. Mekh. 31 101-111
[3]  
Yudovich V.I.(1968)Appearance of Convection in a Layer of Fluid with a Free Boundary Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza 4 23-28
[4]  
Izakson V.Kh.(1971)The Use of Group Properties for the Determination of Multiparameter Families of Solutions of Nonlinear Equations Mat. Sb. 85 440-454
[5]  
Yudovich V.I.(1975)The Use of Group Invariance in Branching Theory Differ. Uravn. 11 1518-1521
[6]  
Loginov B.V.(1991)Generalized Jordan Structure in the Problem of the Stability of Bifurcating Solutions Nonlinear Anal. TMA 17 219-231
[7]  
Trenogin V.A.(undefined)undefined undefined undefined undefined-undefined
[8]  
Loginov B.V.(undefined)undefined undefined undefined undefined-undefined
[9]  
Trenogin V.A.(undefined)undefined undefined undefined undefined-undefined
[10]  
Loginov B.V.(undefined)undefined undefined undefined undefined-undefined