Measure theory and S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{2}$$\end{document}-pseudo almost periodic and automorphic process: application to stochastic evolution equations

被引:0
作者
Mamadou Abdoul Diop
Khalil Ezzinbi
Mamadou Moustapha Mbaye
机构
[1] Université Gaston Berger de Saint-Louis,Département de Mathématiques
[2] UFR SAT,Département de Mathématiques, Faculté des Sciences Semlalia
[3] Université Cadi Ayyad,undefined
关键词
Measure theory; Ergodicity; Stepanov-like ; -pseudo almost periodic solution; Stepanov-like ; -pseudo almost automorphic solution; completeness and composition theorem; stochastic processes; stochastic evolution equations; 34C27; 34K14; 34K30; 34K50; 35B15; 35K55; 43A60; 60G20;
D O I
10.1007/s13370-014-0247-x
中图分类号
学科分类号
摘要
In this work, we use the measure theory to define and to study the spaces of Stepanov-like μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-pseudo almost (S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{2}$$\end{document}-μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-pseudo almost) periodic and automorphic processes in the square mean sense. We establish many interesting results on the functional spaces of such processes like completeness and composition theorems. The main objective of this paper is to establish the existence, uniqueness and stability of square-mean μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-pseudo almost periodic (resp. automorphic) mild solution to a linear and semilinear case of the stochastic evolution equations in case when the functions forcing are both continuous and S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{2}$$\end{document}-μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-pseudo almost periodic (resp. automorphic) and verify some suitable assumptions. The technique analysis used to achieve the required results are the stochastic analysis theory, the composition theorems and the Banach fixed point theorem. We provide an example to illustrate ours results.
引用
收藏
页码:779 / 812
页数:33
相关论文
共 77 条
[1]  
Blot J(2012)Measure theory and pseudo almost automorphic function: new developments and applications Nonlinear Anal. TMA 75 2426-2447
[2]  
Cieutat P(2011)New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications Appl. Anal. DOI 10 628941-827
[3]  
Ezzinbi K(2007)Existence of almost periodic solutions to some stochastic differential equations Appl. Anal. 86 819-2849
[4]  
Blot J(2008)Existence of almost periodic solutions to some functional integro-differential stochastic evolution equations Stat. Probab. Lett. 78 2844-10
[5]  
Cieutat P(2007)Square-mean almost periodic solutions nonautonomous stochastic differential equations Electron. J. Differ. Equ. 117 1-19
[6]  
Ezzinbi K(2008)Existence of S2-almost periodic solutions to a class of nonautonomous stochastic evolution equations Electron. J. Qual. Theory Differ. Equ. 35 1-585
[7]  
Bezandry P(1961)Uniform convergence of monotone sequences of functions Proc. Natl. Acad. Sci. USA 47 582-1139
[8]  
Diagana T(2011)Stepanov-like almost automorphy for stochastic processes and applications to stochastic differential equations Nonlinear Anal. Real World Appl. 12 1130-27
[9]  
Bezandry P(2010)Composition of pseudo almost periodic and pseudo almost automorphic functions and applications to evolution equations Appl. Anal. 89 11-1139
[10]  
Bezandry PH(2011)Stepanov-like almost automorphy for stochastic processes and applications to stochastic differential equations Nonlinear Anal. Real World Appl. 12 1130-1091