Overconvergence Properties of Dirichlet Series

被引:0
作者
Mayya Golitsyna
机构
[1] University College Dublin,School of Mathematics and Statistics
来源
Potential Analysis | 2021年 / 55卷
关键词
Dirichlet series; Overconvergence; Minimally thin sets; 31B50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we use potential theoretic arguments to establish new results concerning the overconvergence of Dirichlet series. Let ∑j=0∞aje−λjs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\sum }_{j=0}^{\infty } a_{j}e^{-\lambda _{j}s}$\end{document} converge on the half-plane {Re(s) > 0} to a holomorphic function f. Our first result gives sufficient conditions for a subsequence of partial sums of the series to converge at every regular point of f. The second result shows, in particular, that if a subsequence of the partial sums of the series is uniformly bounded on a nonpolar compact set K ⊂{Re(s) < 0} and ξ ∈{Re(s) = 0} is a regular point of f, then this subsequence converges on a neighbourhood of ξ.
引用
收藏
页码:1 / 10
页数:9
相关论文
共 5 条
[1]  
Earl JP(1966)Note on the region of overconvergence of Dirichlet series with Ostrowski gaps Proc. Glasgow. Math. Assoc. 7 169-173
[2]  
Shackell JR(2012)Existence of universal Taylor series for nonsimply connected domains Constr. Approx. 35 245-257
[3]  
Gardiner SJ(2002)On polynomial sequences with restricted growth near infinity Bull. London Math. Soc. 34 189-199
[4]  
Müller J(undefined)undefined undefined undefined undefined-undefined
[5]  
Yavrian A(undefined)undefined undefined undefined undefined-undefined