Stability for the Timoshenko Beam System with Local Kelvin–Voigt Damping

被引:0
作者
Hong Liang Zhao
Kang Sheng Liu
Chun Guo Zhang
机构
[1] Zhejiang University,Department of Mathematics
[2] Northeast Normal University,Department of Mathematics
[3] Zhejiang University,Department of Mathematics
来源
Acta Mathematica Sinica | 2005年 / 21卷
关键词
Timoshenko beam; Kelvin–Voigt damping; Semigroup; Stability; 35B37; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a vibrating beam with one segment made of viscoelastic material of a Kelvin–Voigt (shorted as K–V) type and other parts made of elastic material by means of the Timoshenko model. We have deduced mathematical equations modelling its vibration and studied the stability of the semigroup associated with the equation system. We obtain the exponential stability under certain hypotheses of the smoothness and structural condition of the coefficients of the system, and obtain the strong asymptotic stability under weaker hypotheses of the coefficients.
引用
收藏
页码:655 / 666
页数:11
相关论文
共 11 条
[1]  
Chen undefined(1991)undefined SIAM J. Appl. Math. 51 266-undefined
[2]  
Liu undefined(1997)undefined SIAM J. Cont. Optim. 35 1574-undefined
[3]  
Zuazua undefined(1990)undefined Comm. Part. Diff. Eq. 15 205-undefined
[4]  
Liu undefined(2002)undefined Z. Angew Math. Phys. 53 265-undefined
[5]  
Liu undefined(1998)undefined SIAM J. Control Optim. 36 1086-undefined
[6]  
Bardos undefined(1992)undefined SIAM J. Cont. Optim. 30 1024-undefined
[7]  
Rivera undefined(2000)undefined Acta Appl. Math. 62 1-undefined
[8]  
Rivera undefined(2001)undefined Quaterly of Appl. Math. LIX 557-undefined
[9]  
Chen undefined(1998)undefined SIAM J. Appl. Math. 59 651-undefined
[10]  
Huang undefined(1995)undefined J. Diff. Eqs. 104 307-undefined