Disturbance observer for uncertain Lipschitz nonlinear systems under multiple time-varying delays

被引:0
|
作者
Boubekeur Targui
Omar Hernández-González
Carlos-Manuel Astorga-Zaragoza
María-Eusebia Guerrero-Sánchez
Guillermo Valencia-Palomo
机构
[1] UNICAEN-ENSICAEN,Laboratoire d’Ingénierie des Systèmes
[2] IT Hermosillo,CONACyT
[3] Tecnológico Nacional de México/Centro Nacional de Investigación y Desarrollo Tecnológico,Tecnológico Nacional de México
[4] Tecnológico Nacional de México/IT Hermosillo,undefined
来源
Computational and Applied Mathematics | 2022年 / 41卷
关键词
Disturbance observer; Nonlinear systems; Time-varying delays; 37N35;
D O I
暂无
中图分类号
学科分类号
摘要
The prime aim of this paper is to synthesize a novel disturbance observer based on a cascade structure for a class of Lipschitz nonlinear systems with model uncertainties and output measurements corrupted by external disturbances and multiple time-varying delays. The proposed observation scheme is comprised of a cascade of state observers, where everyone is tasked to estimate the state over a short time interval, while the initial item provides the undelayed estimation. Each item of the cascade disturbance observer contains a dynamical proportional-integral term which allows to reduce effects of the time-delay and the unknown signals. An originality of the proposed approach is that it involves less-restrictive Lipschitz inequalities for function describing the nonlinear system. The convergence analysis is based on a Lyapunov–Krasovskii functional approach to demonstrate that the observation error is decaying to zero. The proposed disturbance observer can appropriately estimate the state variables by attenuating the effect of model uncertainties and external disturbances. An example considering a Chua’s chaotic system illustrates the effectiveness of the proposed approach.
引用
收藏
相关论文
共 50 条
  • [1] Disturbance observer for uncertain Lipschitz nonlinear systems under multiple time-varying delays
    Targui, Boubekeur
    Hernandez-Gonzalez, Omar
    Astorga-Zaragoza, Carlos-Manuel
    Guerrero-Sanchez, Maria-Eusebia
    Valencia-Palomo, Guillermo
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (03)
  • [2] Observer synthesis under time-varying sampling for Lipschitz nonlinear systems
    Etienne, Lucien
    Hetel, Laurentiu
    Efimov, Denis
    Petreczky, Mihaly
    AUTOMATICA, 2017, 85 : 433 - 440
  • [3] A CHAIN OBSERVER FOR NONLINEAR SYSTEMS WITH MULTIPLE TIME-VARYING MEASUREMENT DELAYS
    Cacace, Filippo
    Germani, Alfredo
    Manes, Costanzo
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (03) : 1862 - 1885
  • [4] Event-Triggered State and Disturbance Estimation for Lipschitz Nonlinear Systems With Unknown Time-Varying Delays
    Huong, Dinh Cong
    Nahavandi, Saeid
    Trinh, Hieu
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (12) : 7895 - 7905
  • [5] An Enhanced Observer for Nonlinear Systems With Time-Varying Measurement Delays
    Cacace, Filippo
    Germani, Alfredo
    Manes, Costanzo
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (12) : 5968 - 5973
  • [6] Distributed disturbance observer-based nonfragile bipartite consensus of nonlinear multiagent systems with multiple time-varying delays
    Tang, Zhen
    Zhen, Ziyang
    Zhao, Zhengen
    Deconinck, Geert
    ISA TRANSACTIONS, 2024, 150 : 44 - 55
  • [7] State estimation fora class of nonlinear time-varying uncertain systems under multiharmonic disturbance
    Margun, Alexey A.
    Bui, Van H.
    Bobtsov, Alexey A.
    Efimov, Denis, V
    EUROPEAN JOURNAL OF CONTROL, 2025, 82
  • [8] Stabilization for a Class of Partially Observable Uncertain Fractional-Order Nonlinear Systems With Time-Varying Delays and Disturbance
    Yang, Yi
    Ma, Xin
    Zhang, Haiyan H.
    Voyles, Richard M.
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (12): : 7341 - 7355
  • [9] Stabilization for linear uncertain systems with switched time-varying delays
    Chen, Xinwei
    Du, Sheng-Li
    Wang, Li-Dong
    Liu, Li-Juan
    NEUROCOMPUTING, 2016, 191 : 296 - 303
  • [10] Extended disturbance observer for nonlinear system with time-varying disturbance gain
    Kim, Dong-Hyun
    Choi, Seibum B.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2023, 37 (01) : 347 - 355