On the product sets of rational numbers

被引:0
作者
Yurii N. Shteinikov
机构
[1] Steklov Mathematical Institute of Russian Academy of Sciences,
来源
Proceedings of the Steklov Institute of Mathematics | 2017年 / 296卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A new lower bound on the size of product sets of rational numbers is obtained. An upper estimate for the multiplicative energy of two sets of rational numbers is also found.
引用
收藏
页码:243 / 250
页数:7
相关论文
共 14 条
[1]  
Cilleruelo J.(2016)On product sets of rationals Int. J. Number Theory 12 1415-1420
[2]  
Cilleruelo J.(2016)Congruences involving product of intervals and sets with small multiplicative doubling modulo a prime and applications Math. Proc. Cambridge Philos. Soc. 160 477-494
[3]  
Garaev M. Z.(2010)The number of rational numbers determined by large sets of integers Bull. London Math. Soc. 42 517-526
[4]  
Cilleruelo J.(2017)Quotient and product sets of thin subsets of the positive integers Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 296 58-71
[5]  
Ramana D. S.(2016)New results on sums and products in R Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 294 87-98
[6]  
Ramaré O.(1933)Über additive Eigenschaften von Zahlen Math. Ann. 107 649-690
[7]  
Cilleruelo J.(2015)Estimates of trigonometric sums over subgroups and some of their applications Mat. Zametki 98 606-625
[8]  
Ramana D. S.(2017)Addendum to J. Cilleruelo, D.S. Ramana, and O. Ramaré’s paper ‘Quotient and product sets of thin subsets of the positive integers’ Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 296 260-264
[9]  
Ramaré O.(undefined)undefined undefined undefined undefined-undefined
[10]  
Konyagin S. V.(undefined)undefined undefined undefined undefined-undefined