*-Jordan Semi-Triple Derivable Mappings

被引:0
作者
Lin Chen
Jianhua Zhang
机构
[1] Shaanxi Normal University,College of Mathematics and Information Science
[2] Anshun University,Department of Mathematics and Physics
来源
Indian Journal of Pure and Applied Mathematics | 2020年 / 51卷
关键词
Jordan semi-triple derivable mapping; derivation; matrix algebra; 47B49; 46K15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we characterize the *-Jordan semi-triple derivable mappings (i.e. a mapping Φ from * algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{A}$$\end{document} into A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{A}$$\end{document} satisfying Φ(AB*A) = Φ(A)B*A + AΦ(B)*A + AB* Φ(A) for every A, B A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{A}$$\end{document}) in the finite dimensional case and infinite dimensional case.
引用
收藏
页码:825 / 837
页数:12
相关论文
共 28 条
[1]  
Brešar M(1989)Jordan mappings of semiprime rings J. Algebra 127 218-228
[2]  
Du W(2008)Jordan semi-triple derivable maps of matrix algebras Acta Math. Sinica 51 571-578
[3]  
Zhang J(2013)*-Jordan-triple multiplicative surjective maps on J. Math. Anal. Appl. 401 397-403
[4]  
Gao H(2006)On injective Jordan semi-triple maps of matrix algebras Linear Algebra Appl. 414 383-388
[5]  
Lešnjak G(1986)Additivity of *-semigroup isomorphisms among *-algebra Bull. Lond. Math. Soc. 18 51-56
[6]  
Sze N S(1957)Jordan Derivations of prime rings Proc. Amer. Math. Soc. 8 1104-1110
[7]  
Hakeda J(2012)Lie derivable mappings on prime rings Comm. Algebra 40 2700-2719
[8]  
Herstein I N(2016)Nonlinear *-Lie derivation of standard operator algebras Questions. Math. 39 1037-1046
[9]  
Jing W(1966)Derivations of operator algebras Ann. Math. 83 280-293
[10]  
Lu F(2014)Nonlinear Linear Multilinear Algebra 62 466-473