On some new trapezoidal inequalities for qϰ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{\varkappa _{2}}$$\end{document}-quantum integrals via Green function

被引:0
作者
Muhammad Aamir Ali
Necmettin Alp
Hüseyin Budak
Praveen Agarwal
机构
[1] Nanjing Normal University,Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences
[2] Düzce University,Department of Mathematics, Faculty of Science and Arts
[3] Anand International College of Engineering,Department of Mathematics
[4] Ajman University,Nonlinear Dynamics Research Center (NDRC)
关键词
Hermite–Hadamard inequality; -integral; Quantum calculus; Convex functions; Green function; 26D10; 26D15; 26A51;
D O I
10.1007/s41478-021-00323-8
中图分类号
学科分类号
摘要
In this paper, we first obtain a new identity for qϰ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{\varkappa _{2}}$$\end{document}-quantum integrals by using Green function, the result is then used to establish some new bounds for the right hand side of qϰ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{\varkappa _{2}}$$\end{document}-Hermite Hadamard inequality. It is also revealed that the results presented in this research transformed into some already proved results by considering the limits as q→1-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\rightarrow 1^{-}$$\end{document} in the newly obtained results.
引用
收藏
页码:15 / 33
页数:18
相关论文
共 93 条
[1]  
Agarwal R(1953)A propos d’une note de m. pierre humbert Comptes rendus de l’Academie des Sciences 236 2031-2032
[2]  
Ali MA(2020)Some new Simpson’s type inequalities for co-ordinated convex functions in quantum calculus Mathematical Methods in the Applied Sciences 2021 7-203
[3]  
Budak H(2021)Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second Advances in Difference Equations 2021 25-356
[4]  
Zhang Z(2021)-derivatives Advances in Difference Equations 30 193-20483
[5]  
Yildrim H(2021)New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions Advances in Difference Equations 20 341-910
[6]  
Ali MA(2018)Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables Journal of King Saud University-Science 7 20479-118
[7]  
Budak H(2020)-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions Applied Mathematics E-Notes 186 899-300
[8]  
Abbas M(2019)Hermite Hadamard’s type inequalities for co-ordinated convex functions on quantum integral IEEE Access 2 107-203
[9]  
Chu Y-M(2021)New quantum Hermite–Hadamard inequalities utilizing harmonic convexity of the functions Proycciones Journal of Mathematics 47 281-20
[10]  
Ali MA(2021)Some trapezoide and midpoint type inequalities for newly defined quantum integrals Mathematical Methods in the Applied Sciences 7 632-273