Stability Estimates in Determination of Non-orientable Surface from Its Dirichlet-to-Neumann Map

被引:0
作者
D. V. Korikov
机构
[1] St.Petersburg Department of Steklov Mathematical Institute,
来源
Complex Analysis and Operator Theory | 2024年 / 18卷
关键词
Electric impedance tomography of surfaces; Holomorphic immersions; Dirichlet-to-Neumann map; Stability of determination; Stability estimates; Teichmüller distance; 35R30; 46J15; 46J20; 30F15;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M, g) and (M′,g′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M',g')$$\end{document} be non-orientable Riemannian surfaces with fixed boundary Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} and fixed Euler characterictic m, and Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} and Λ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda '$$\end{document} be their Dirichlet-to-Neumann maps, respectively. We prove that the closeness of Λ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda '$$\end{document} to Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} in the operator norm implies the existence of the near-conformal diffeomorphism β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} between (M, g) and (M′,g′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M',g')$$\end{document} which does not move the points of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}. Thereby we establish the continuity of the determination Λ↦[(M,g)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda \mapsto [(M,g)]$$\end{document}, where [(M, g)] is the conformal class of (M, g) and the set of such conformal classes is endowed with the natural Teichmüller-type metric dT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_T$$\end{document}. In both orientable and non-orientable case we provide quantitative estimates of dT([(M,g)],[(M′,g′)])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_T([(M,g)],[(M',g')])$$\end{document} via the operator norm of the difference Λ′-Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda '-\Lambda $$\end{document}. We also obtain generalizations of the results above to the case in which the Dirichlet-to-Neumann map is given only on a segment of the boundary.
引用
收藏
相关论文
共 15 条
[1]  
Badanin AV(2021)Electric impedance tomography problem for surfaces with internal holes Inverse Probl. 37 66-182
[2]  
Belishev MI(2003)The Calderon problem for two-dimensional manifolds by the BC-method SIAM J. Math. Anal. 35 172-5287
[3]  
Korikov DV(2020)On the EIT problem for nonorientable surfaces J. Inverse Ill-Posed Probl. 53 5278-176
[4]  
Belishev MI(2021)On determination of nonorientable surface via its Diriclet-to-Neumann operator SIAM J. Math. Anal. 31 159-66
[5]  
Belishev MI(2023)On stability of determination of Riemann surface from its DN-map J. Inverse Ill-Posed Probl. 506 57-787
[6]  
Korikov DV(2021)On the topology of surfaces with a common boundary and close DN-maps Zapiski Nauchnykh Seminarov POMI 34 771-1112
[7]  
Belishev MI(2001)On determining a Riemannian manifold from the Dirichlet-to-Neumann map Ann. Scient. Ec. Norm. Sup. 42 1097-undefined
[8]  
Korikov DV(1989)Determining anisotropic real-analytic conductivities by boundary measurements Comm. Pure Appl. Math. undefined undefined-undefined
[9]  
Belishev MI(undefined)undefined undefined undefined undefined-undefined
[10]  
Korikov DV(undefined)undefined undefined undefined undefined-undefined