Ends of Gradient Ricci Solitons

被引:0
作者
Ovidiu Munteanu
Jiaping Wang
机构
[1] University of Connecticut,Department of Mathematics
[2] University of Minnesota,School of Mathematics
来源
The Journal of Geometric Analysis | 2022年 / 32卷
关键词
Ricci solitons; Ricci flow; Ends; 53C44; 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
Self-similar solutions to Ricci flows, called Ricci solitons, are important geometric objects. To address the question whether new solitons can be constructed from existing ones through connected sums, we are led to investigate the issue of connectedness at infinity for solitons. The paper provides a brief account of our work along this line as well as a new result. The new result says that an n-dimensional gradient shrinking Ricci soliton is necessarily connected at infinity if its scalar curvature is bounded above by n3.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n}{3}.$$\end{document}
引用
收藏
相关论文
共 64 条
[1]  
Cao HD(2006)Geometry of Ricci solitons Chin. Ann. Math. 27B 121-142
[2]  
Cao HD(2010)On complete gradient shrinking Ricci solitons J. Differ. Geom. 85 175-186
[3]  
Zhou D(2011)The conjugate heat equation and ancient solutions of the Ricci flow Adv. Math. 228 2891-2919
[4]  
Cao X(1971)The splitting theorem for manifolds of nonnegative Ricci curvature J. Differ. Geom. 6 119-128
[5]  
Zhang Q(2009)Strong uniqueness of the Ricci flow J. Differ. Geom. 82 362-382
[6]  
Cheeger J(1975)Eigenvalue comparison theorems and its geometric applications Math. Z. 143 289-297
[7]  
Gromoll D(2011)A lower bound for the scalar curvature of noncompact nonflat Ricci shrinkers Comptes Rendus Mathematique 349 1265-1267
[8]  
Chen BL(2011)On Type-I singularities in Ricci flow Commun. Anal. Geom. 19 905-922
[9]  
Cheng SY(2003)Rotationally symmetric shrinking and expanding gradient Ricci solitons J. Differ. Geom. 65 169-209
[10]  
Chow B(1975)Logarithmic Sobolev inequalities Am. J. Math. 97 1061-1083