Herman’s theory revisited

被引:0
作者
K. Khanin
A. Teplinsky
机构
[1] University of Toronto,Department of Mathematics
[2] National Academy of Sciences of Ukraine,Institute of Mathematics
来源
Inventiones mathematicae | 2009年 / 178卷
关键词
Invariant Measure; Rotation Number; Rigid Rotation; Sharp Result; Ratio Distortion;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that a C2+α-smooth orientation-preserving circle diffeomorphism with rotation number in Diophantine class Dδ, 0≤δ<α≤1, α−δ≠1, is C1+α−δ-smoothly conjugate to a rigid rotation. This is the first sharp result on the smoothness of the conjugacy. We also derive the most precise version of Denjoy’s inequality for such diffeomorphisms.
引用
收藏
页码:333 / 344
页数:11
相关论文
共 18 条
[1]  
Arnold V.I.(1961)Small denominators. I. Mapping the circle onto itself Izv. Akad. Nauk SSSR Ser. Mat. 25 21-86
[2]  
de Melo W.(1989)A structure theorem in one-dimensional dynamics Ann. Math. (2) 129 519-546
[3]  
van Strien S.(1979)Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations IHES Publ. Math. 49 5-233
[4]  
Herman M.-R.(1989)The differentiability of the conjugation of certain diffeomorphisms of the circle Ergod. Theory Dyn. Syst. 9 643-680
[5]  
Katznelson Y.(1989)The absolute continuity of the conjugation of certain diffeomorphisms of the circle Ergod. Theory Dyn. Syst. 9 681-690
[6]  
Ornstein D.(1987)A new proof of M. Herman’s theorem Commun. Math. Phys. 112 89-101
[7]  
Katznelson Y.(1989)Smoothness of conjugacies of diffeomorphisms of the circle with rotations Usp. Mat. Nauk 44 57-82
[8]  
Ornstein D.(1988)Rational rotation numbers for maps of the circle Commun. Math. Phys. 119 109-128
[9]  
Khanin K.M.(2008)On cross-ratio distortion and Schwartz derivative Nonlinearity 55 2777-2783
[10]  
Sinai Y.G.(2008)On the smoothness of conjugation of circle diffeomorphisms with rigid rotations Ukr. Math. J. 60 268-282