New estimates of the remainder in an asymptotic formula in the multidimensional Dirichlet divisor problem

被引:0
作者
O. V. Kolpakova
机构
[1] Moscow State University,
来源
Mathematical Notes | 2011年 / 89卷
关键词
Dirichlet divisor problem; Riemann zeta function; Karatsuba constant; Carleson exponent; Dirichlet series;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain a new value of the Karatsuba constant in the multidimensional Dirichlet divisor problem. We also find a new value of the exponent of the main parameter in the estimate of the mean value of the remainder in a given asymptotics. The proof of the main statements is based on the derivation of a new estimate of the Carleson abscissa in the theory of the Riemann zeta function.
引用
收藏
页码:504 / 518
页数:14
相关论文
共 21 条
[1]  
Voronoï G.(1903)Sur un problème du calcul des fonctions asymptotiques Reine Angew. Math. 126 241-282
[2]  
Hardy G. H.(1922)The approximate functional equation in the theory of the zeta-function, with applications to the divisor problems of Dirichlet and Piltz Proc. London Math. Soc. (2) 21 39-74
[3]  
Littlewood J. E.(1922)Versch ärfung der Absch ätzung beim Teilerproblem Math. Ann. 87 39-65
[4]  
van der Corput J. G.(1952)On diviser problems Acta Math. Sinica (Chin. Ser.) 2 258-266
[5]  
Tong K. C.(1926)Über zwei Gitterpunktprobleme Math. Ann. 95 69-83
[6]  
Walfisz A.(1941)A divisor problem Quart. J.Math., Oxford Ser. 12 193-200
[7]  
Atkinson F. V.(1950)The Dirichlet’s divisor problem Sci. Rep. Nat. Tsing Hua Univ. Ser. A 5 402-427
[8]  
Chih T.(1953)Versh ärfung der Absch ärzung beim Dirichletschen Teilerproblem Math. Z. 58 204-218
[9]  
Richert H.-E.(1965)On the divisor problem for Sci. Sinica 14 19-29
[10]  
Chen J.(1972)( Izv. Akad. Nauk SSSR Ser. Mat. 36 475-483