Weierstrass Points and Regular Maps

被引:0
作者
D. Singerman
P. D. Watson
机构
[1] University of Southampton,Faculty of Mathematical Studies
来源
Geometriae Dedicata | 1997年 / 66卷
关键词
regular map; Riemann surface; Weierstrass point.;
D O I
暂无
中图分类号
学科分类号
摘要
It was shown by G. A. Jones and the first author in [8] that underlying any map on a compact orientable surface S there is a natural complex structure making S into a Riemann surface. In this paper we consider regular maps and enquire about the Weierstrass points on the underlying Riemann surface. We are particularly interested to know when these are geometric, i.e. whether they lie at vertices, face-centres or edge-centres of the map.
引用
收藏
页码:69 / 88
页数:19
相关论文
共 14 条
[1]  
Garbe D.(1969)Über die regulärien Zerlegungen geschlossener orientierbarer Fl ächen J. reine angew. Math. 237 39-55.
[2]  
Harvey W. J.(1966)Cyclic groups of automorphisms of a compact Riemann surface Quart. J. Math. Oxford (2) 17 86-97.
[3]  
Harvey W. J.(1971)On branch loci in Teichmüller space Trans. Amer. Math. Soc. 153 387-399
[4]  
Jones G. A.(1978)Theory of maps on orientable surfaces Proc. Lon. Math. Soc. (3) 37 273-307.
[5]  
Singerman D.(1996)Belyi functions, hypermaps and Galois groups Bull. Lon. Math. Soc. 28 561-590.
[6]  
Jones G. A.(1991)Isolated points in the branch locus of the moduli space of compact Riemann surfaces Annales Academi æ Scientiarum Fennic æ, Series A. I. Mathematica 16 71-81.
[7]  
Singerman D.(1963)Automorphisms of compact Riemann surfaces Amer. J. Math. 85 734-752.
[8]  
Kulkarni R. S.(1973)On Schoeneberg's theorem Glasgow Math. J. 14 202-204.
[9]  
Lewittes J.(1959)The regular maps on a surface of genus three Canad. J. Math. 11 452-480.
[10]  
Maclachlan C.(1970)Subgroups of Fuchsian groups and finite permutation groups Bull. London Math. Soc. 2 319-323.