Circuits in Suborbital Graphs for The Normalizer

被引:0
作者
Serkan Kader
机构
[1] Niğde Ömer Halisdemir University,Department of Mathematics, Faculty of Arts and Sciences
来源
Graphs and Combinatorics | 2017年 / 33卷
关键词
Normalizer; Suborbital graph; Imprimitive action; Circuit; 11F06; 20H10; 05C20; 05C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate suborbital graph for the normalizer of Γ0(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma _0(N)$$\end{document} in PSL(2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PSL(2,\mathbb {R})$$\end{document}, where N will be of the form 223p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^23p^2$$\end{document}, p is prime number greater than 3 and p≡1(mod3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\equiv 1\pmod {3}$$\end{document} . Then we give edge and circuit conditions on graphs arising from the imprimitive action of the normalizer.
引用
收藏
页码:1531 / 1542
页数:11
相关论文
共 24 条
[1]  
Akbaş M(1990)The normalizer of Glasgow Math. 32 317-327
[2]  
Singerman D(1992) in PSL(2, London Math. Soc. Lect. Note Ser. 165 77-86
[3]  
Akbaş M(1996)) Turk. J. Math. 20 379-387
[4]  
Singerman D(1979)The signature of the normalizer of Bull. Lond. Math. Soc. 11 308-339
[5]  
Akbaş M(2011)Suborbital graphs for the normalizer of Hacet. J. Math. Stat. 40 203-210
[6]  
Başkan T(2016)Monstrous moonshine SpringerPlus 5 1327-312
[7]  
Conway JH(2010)Elliptic elements and circuits in suborbital graphs Iran. J. Sci. Technol. A 34 305-206
[8]  
Norton SP(2006)Solutions to some congruence equations via suborbital graphs Eur. J. Comb. 27 193-368
[9]  
Güler BÖ(2009)Suborbital graphs for a special subgroup of the normalizer of Electron. J. Comb. 16 116-86
[10]  
Beşenk M(1964)Suborbital graphs for the normalizer of Ann. Math. 79 360-undefined