Limit Cycles for Multidimensional Vector Fields. The Elliptic Case

被引:0
作者
Marcin Bobieński
Henryk Żoładek
机构
[1] Warsaw University,Department of Mathematical Methods in Physics
[2] Warsaw University,Institute of Mathematics
来源
Journal of Dynamical and Control Systems | 2003年 / 9卷
关键词
Poincaré-Pontryagin-Melnikov-Arnold integrals; limit cycles; normal hyperbolicity;
D O I
暂无
中图分类号
学科分类号
摘要
We consider polynomial vector fields of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot x = 2y + zR(x,y), \dot y = 3x^2 - 3 + z{\text{S}}(x{\text{,}}y),{\text{ }}\dot z = A(x,y)z,{\text{ }}z \in \mathbb{R}^v $$ \end{document} and their polynomial perturbations of degree ≤n. We present a sufficient condition that the perturbed system has an invariant surface close to the plane z = 0. We study limit cycles which appear on this surface. The linearized condition for limit cycles, bifurcating from the curves y2 − x3 + 3x = h, leads to a certain 2- dimensional integral (which generalizes the elliptic integrals). We show that this integral has a representation R1(h)I1 + ⋅⋅⋅ + Re(h)Ie, where Rj(h) are rational functions with degrees of numerators and denominators bounded by O(n). In the case of constant and one-dimensional matrix A(x,y) we estimate the number of zeros of the integral by const ⋅n.
引用
收藏
页码:265 / 310
页数:45
相关论文
共 14 条
  • [1] Il'yashenko Y. S.(1995)Double exponential estimate for the number of zeros of complete abelian integrals Invent. Math. 121 613-650
  • [2] Yakovenko S. Y.(1984)Real analytic manifolds with the property of finiteness, and complex abelian integrals Funct. Anal. Appl. 18 40-50
  • [3] Khovanskii A. G.(1996)Generalized Rolle theorem in ℝ J. Dynam. Control Systems 2 103-123
  • [4] Khovanskii A. G.(2001) and ℂ J. Dynam. Differ. Equat. 13 689-709
  • [5] Yakovenko S. Y.(1966)Limit cycles appearing after perturbation of certain multidimensional vector fields Amer. Math. Soc. Transl. Ser. 2 50 189-234
  • [6] Leszczyński P.(1984)Rational points of algebraic curves over functional fields Funct. Anal. Appl. 18 73-74
  • [7] żoładek H.(1988)On the number of zeros of elliptic integrals Funct. Anal. Appl. 22 72-73
  • [8] Manin Y. I.(1990)The Chebyshev property of elliptic integrals Funct. Anal. Appl. 24 205-210
  • [9] Petrov G. S.(1962)Non-oscillation of elliptic integrals Funkc. Ekvacioj 4 29-56
  • [10] Petrov G. S.(1984)Simplification of a system of linear ordinary differential equations about a singular point Funct. Anal. Appl. 18 14-25