A Note on the Modularization of Lattices

被引:0
|
作者
Yibo Gao
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
来源
Order | 2020年 / 37卷
关键词
Lattice; Modular lattice; Valuation polytope;
D O I
暂无
中图分类号
学科分类号
摘要
Valuations on finite lattices have been known for a long time. In this paper, we present a combinatorial procedure called modularization that associates a modular lattice to any given finite lattice such that they have the same valuation polytopes.
引用
收藏
页码:311 / 318
页数:7
相关论文
共 50 条
  • [41] A Complete Characterization of Hyperidentities of the Variety of Weakly Idempotent Lattices
    Movsisyan, Yuri
    Davidova, Diana
    TENTH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES REVISED SELECTED PAPERS CSIT-2015, 2015, : 41 - 43
  • [42] Involutive Residuated Lattices Based on Modular and Distributive Lattices
    Jeffrey S. Olson
    Order, 2014, 31 : 373 - 389
  • [43] Suslin Lattices
    Raghavan, Dilip
    Yorioka, Teruyuki
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2014, 31 (01): : 55 - 79
  • [44] On convexities of lattices
    Lihova, Judita
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2008, 72 (1-2): : 35 - 43
  • [45] Semimodular λ-lattices
    Chajda, Ivan
    Langer, Helmut
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2022, 39 (01) : 79 - 96
  • [46] On differential lattices
    Aiping Gan
    Li Guo
    Soft Computing, 2022, 26 : 7043 - 7058
  • [47] Lattices of subclasses
    M. V. Semenova
    A. Zamojska-Dzienio
    Siberian Mathematical Journal, 2012, 53 : 889 - 905
  • [48] Convolution lattices
    De Miguel, L.
    Bustince, H.
    De Baets, B.
    FUZZY SETS AND SYSTEMS, 2018, 335 : 67 - 93
  • [49] Sunflowers in lattices
    McKenna, G
    ELECTRONIC JOURNAL OF COMBINATORICS, 2005, 12 (01)
  • [50] Lattices of subclasses
    Semenova, M. V.
    Zamojska-Dzienio, A.
    SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (05) : 889 - 905