Dynamical behavior of a system of three-dimensional nonlinear difference equations

被引:0
|
作者
İnci Okumuş
Yüksel Soykan
机构
[1] Bülent Ecevit University,Department of Mathematics, Art and Science Faculty
关键词
System of difference equations; Solution; Boundedness; Equilibrium point; Stability; Global asymptotic stability; 39A10; 39A30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the boundedness, persistence, and periodicity of the positive solutions and the global asymptotic stability of the positive equilibrium points of the system of difference equations xn+1=A+xn−1zn,yn+1=A+yn−1zn,zn+1=A+zn−1yn,n=0,1,…,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{n+1}=A+\frac{x_{n-1}}{z_{n}},\qquad y_{n+1}=A+ \frac{y_{n-1}}{z _{n}},\qquad z_{n+1}=A+\frac{z_{n-1}}{y_{n}},\quad n=0,1,\ldots , $$\end{document} where A∈(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\in ( 0,\infty ) $\end{document} and the initial conditions xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x_{i}$\end{document}, yi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y_{i}$\end{document}, zi∈(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$z_{i}\in ( 0,\infty ) $\end{document}, i=−1,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i=-1,0$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Dynamical behavior of a system of three-dimensional nonlinear difference equations
    Okumus, Inci
    Soykan, Yuksel
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [2] The Dynamical Behavior of a Three-Dimensional System of Exponential Difference Equations
    Khaliq, Abdul
    Sadiq, Stephen
    Ahmed, Hala M. E.
    Mahmoud, Batul A. A.
    Al-Sinan, Bushra R.
    Ibrahim, Tarek Fawzi
    MATHEMATICS, 2023, 11 (08)
  • [3] DYNAMICAL BEHAVIOR OF A P-DIMENSIONAL SYSTEM OF NONLINEAR DIFFERENCE EQUATIONS
    Halim, Yacine
    Allam, Asma
    Bengueraichi, Zineb
    MATHEMATICA SLOVACA, 2021, 71 (04) : 903 - 924
  • [4] GLOBAL BEHAVIOR OF A THREE-DIMENSIONAL SYSTEM OF DIFFERENCE EQUATIONS OF ORDER THREE
    Tollu, Durhasan Turgut
    Yalcinkaya, Ibrahim
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 1 - 16
  • [5] SOLVABILITY OF A NONLINEAR THREE-DIMENSIONAL SYSTEM OF DIFFERENCE EQUATIONS WITH CONSTANT COEFFICIENTS
    Kara, Merve
    Yazlik, Yasin
    MATHEMATICA SLOVACA, 2021, 71 (05) : 1133 - 1148
  • [6] Global behavior of a three-dimensional linear fractional system of difference equations
    Kulenovic, MRS
    Nurkanovic, Z
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 310 (02) : 673 - 689
  • [7] Qualitative behavior and solution of a system of three-dimensional rational difference equations
    Elsayed, E. M.
    Alshareef, A.
    Alzahrani, Faris
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (09) : 5456 - 5470
  • [8] On a three-dimensional solvable system of difference equations
    Halim, Yacine
    Berkal, Massaoud
    Khelifa, Amira
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (04) : 1263 - 1288
  • [9] On a Solvable Three-Dimensional System of Difference Equations
    Kara, Merve
    Yazlik, Yasin
    FILOMAT, 2020, 34 (04) : 1167 - 1186
  • [10] On the solutions of a three-dimensional system of difference equations
    Yazlik, Yasin
    Tollu, Durhasan T.
    Taskara, Necati
    KUWAIT JOURNAL OF SCIENCE, 2016, 43 (01) : 95 - 111