Dynamical behavior of a system of three-dimensional nonlinear difference equations

被引:0
作者
İnci Okumuş
Yüksel Soykan
机构
[1] Bülent Ecevit University,Department of Mathematics, Art and Science Faculty
来源
Advances in Difference Equations | / 2018卷
关键词
System of difference equations; Solution; Boundedness; Equilibrium point; Stability; Global asymptotic stability; 39A10; 39A30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the boundedness, persistence, and periodicity of the positive solutions and the global asymptotic stability of the positive equilibrium points of the system of difference equations xn+1=A+xn−1zn,yn+1=A+yn−1zn,zn+1=A+zn−1yn,n=0,1,…,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{n+1}=A+\frac{x_{n-1}}{z_{n}},\qquad y_{n+1}=A+ \frac{y_{n-1}}{z _{n}},\qquad z_{n+1}=A+\frac{z_{n-1}}{y_{n}},\quad n=0,1,\ldots , $$\end{document} where A∈(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\in ( 0,\infty ) $\end{document} and the initial conditions xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x_{i}$\end{document}, yi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y_{i}$\end{document}, zi∈(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$z_{i}\in ( 0,\infty ) $\end{document}, i=−1,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i=-1,0$\end{document}.
引用
收藏
相关论文
共 35 条
  • [1] Akın E.(2017)Limiting behaviors of nonoscillatory solutions for two-dimensional nonlinear time scale systems Mediterr. J. Math. 14 733-737
  • [2] Öztürk Ö.(2015)Dynamical behavior of a system of second-order nonlinear difference equations Int. J. Differ. Equ. 2015 2617-2628
  • [3] Bao H.(2004)Global asymptotic behavior of positive solutions on the system of rational difference equations Appl. Math. Lett. 17 377-387
  • [4] Camouzis E.(2016), Discrete Dyn. Nat. Soc. 2016 415-426
  • [5] Papaschinopoulos G.(2006)Global character of a six-dimensional nonlinear system of difference equations Adv. Differ. Equ. 2006 839-848
  • [6] Gümüş M.(2017)Asymptotic behavior of a competitive system of linear fractional difference equations J. Fixed Point Theory Appl. 19 329-333
  • [7] Soykan Y.(2017)On the existence of nonoscillatory solutions of three-dimensional time scale systems Math. Inequal. Appl. 20 310-319
  • [8] Kulenovic M.R.S.(2018)Classification schemes of nonoscillatory solutions for two-dimensional time scale systems Adv. Differ. Equ. 2018 932-941
  • [9] Nurkanovic M.(1998)On oscillatory behavior of two-dimensional time scale systems J. Math. Anal. Appl. 219 834-837
  • [10] Öztürk Ö.(2000)On a system of two difference equations Int. J. Math. Math. Sci. 23 1561-1566