Dynamical density functional theory for the diffusion of injected Brownian particles

被引:0
作者
H. Löwen
M. Heinen
机构
[1] Heinrich-Heine-Universität Düsseldorf,Institut für Theoretische Physik II: Weiche Materie
[2] California Institute of Technology,Division of Chemistry and Chemical Engineering
来源
The European Physical Journal Special Topics | 2014年 / 223卷
关键词
European Physical Journal Special Topic; Hard Disk; Brownian Particle; Packing Fraction; Particle Source;
D O I
暂无
中图分类号
学科分类号
摘要
While the theory of diffusion of a single Brownian particle in confined geometries is well-established by now, we discuss here the theoretical framework necessary to generalize the theory of diffusion to dense suspensions of strongly interacting Brownian particles. Dynamical density functional theory (DDFT) for classical Brownian particles represents an ideal tool for this purpose. After outlining the basic ingredients to DDFT we show that it can be readily applied to flowing suspensions with time-dependent particle sources. Particle interactions lead to considerable layering in the mean density profiles, a feature that is absent in the trivial case of noninteracting, freely diffusing particles. If the particle injection rate varies periodically in time with a suitable frequency, a resonance in the layering of the mean particle density profile is predicted.
引用
收藏
页码:3113 / 3127
页数:14
相关论文
共 219 条
  • [41] Grzywna Z.(2007)undefined Phys. Rev. E 76 021403-undefined
  • [42] Rubi J.(2010)undefined Phys. Rev. E 82 031708-undefined
  • [43] Archer A.J.(2011)undefined Phys. Rev. E 84 041708-undefined
  • [44] Hopkins P.(2010)undefined J. Phys.: Condens. Matter 22 364105-undefined
  • [45] Schmidt M.(2011)undefined Molec. Phys. 109 2935-undefined
  • [46] Yarin A.L.(2012)undefined J. Chem. Phys. 137 224904-undefined
  • [47] Jenkins M.C.(2012)undefined Eur. Phys. J. Special Topics 202 1-undefined
  • [48] Egelhaaf S.U.(2008)undefined Phys. Rev. E 78 031409-undefined
  • [49] Percus J.K.(2013)undefined Phys. Rev. Lett. 110 055702-undefined
  • [50] Yevick G.J.(2013)undefined Phys. Rev. Lett. 110 198302-undefined