Dynamical density functional theory for the diffusion of injected Brownian particles

被引:0
作者
H. Löwen
M. Heinen
机构
[1] Heinrich-Heine-Universität Düsseldorf,Institut für Theoretische Physik II: Weiche Materie
[2] California Institute of Technology,Division of Chemistry and Chemical Engineering
来源
The European Physical Journal Special Topics | 2014年 / 223卷
关键词
European Physical Journal Special Topic; Hard Disk; Brownian Particle; Packing Fraction; Particle Source;
D O I
暂无
中图分类号
学科分类号
摘要
While the theory of diffusion of a single Brownian particle in confined geometries is well-established by now, we discuss here the theoretical framework necessary to generalize the theory of diffusion to dense suspensions of strongly interacting Brownian particles. Dynamical density functional theory (DDFT) for classical Brownian particles represents an ideal tool for this purpose. After outlining the basic ingredients to DDFT we show that it can be readily applied to flowing suspensions with time-dependent particle sources. Particle interactions lead to considerable layering in the mean density profiles, a feature that is absent in the trivial case of noninteracting, freely diffusing particles. If the particle injection rate varies periodically in time with a suitable frequency, a resonance in the layering of the mean particle density profile is predicted.
引用
收藏
页码:3113 / 3127
页数:14
相关论文
共 219 条
  • [21] Löwen H.(2007)undefined Phys. Rev. E 76 051202-undefined
  • [22] Wittkowski R.(2008)undefined J. Chem. Phys. 129 144506-undefined
  • [23] Gruhn T.(1986)undefined J. Chem. Phys. 84 2846-undefined
  • [24] Tóth G.I.(1991)undefined Mol. Phys. 74 665-undefined
  • [25] Tegze G.(2012)undefined Phys. Rev. Lett. 108 037802-undefined
  • [26] Gránásy L.(2013)undefined Phys. Rev. E 87 042134-undefined
  • [27] Zhang P.(2006)undefined Mol. Phys. 104 3435-undefined
  • [28] Cai L.(2012)undefined Phys. Rev. Lett. 109 240601-undefined
  • [29] Lian Z.-J.(2012)undefined J. Chem. Phys. 136 164505-undefined
  • [30] Pan X.-Y.(2009)undefined Phys. Rev. E 80 031122-undefined