Numerical Analysis of Nonlinear Eigenvalue Problems

被引:8
作者
Eric Cancès
Rachida Chakir
Yvon Maday
机构
[1] Université Paris-Est,CERMICS, Project
[2] UPMC Univ Paris 06,team Micmac, INRIA
[3] Brown University,Ecole des Ponts
来源
Journal of Scientific Computing | 2010年 / 45卷
关键词
Non linear eigenvalue problem; Spectral and pseudo spectral approximations; Finite element approximation; Ground state computations; Numerical analysis;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a priori error estimates for variational approximations of the ground state energy, eigenvalue and eigenvector of nonlinear elliptic eigenvalue problems of the form −div(A∇u)+Vu+f(u2)u=λu, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|u\|_{L^{2}}=1$\end{document}. We focus in particular on the Fourier spectral approximation (for periodic problems) and on the ℙ1 and ℙ2 finite-element discretizations. Denoting by (uδ,λδ) a variational approximation of the ground state eigenpair (u,λ), we are interested in the convergence rates of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|u_{\delta}-u\|_{H^{1}}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|u_{\delta}-u\|_{L^{2}}$\end{document}, |λδ−λ|, and the ground state energy, when the discretization parameter δ goes to zero. We prove in particular that if A, V and f satisfy certain conditions, |λδ−λ| goes to zero as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|u_{\delta}-u\|_{H^{1}}^{2}+\|u_{\delta}-u\|_{L^{2}}$\end{document}. We also show that under more restrictive assumptions on A, V and f, |λδ−λ| converges to zero as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|u_{\delta}-u\|_{H^{1}}^{2}$\end{document}, thus recovering a standard result for linear elliptic eigenvalue problems. For the latter analysis, we make use of estimates of the error uδ−u in negative Sobolev norms.
引用
收藏
页码:90 / 117
页数:27
相关论文
共 9 条
  • [1] Cancès E.(2001)SCF algorithms for Kohn-Sham models with fractional occupation numbers J. Chem. Phys. 114 10616-10623
  • [2] Cancès E.(2000)Can we outperform the DIIS approach for electronic structure calculations? Int. J. Quantum Chem. 79 82-90
  • [3] Le Bris C.(2003)Spectral method for the time-dependent Gross-Pitaevskii equation with harmonic traps Phys. Rev. E 67 481-497
  • [4] Dion C.(1992)Superposition of functions in Sobolev spaces of fractional order. A survey Banach Center Publ. 27 189-257
  • [5] Cancès E.(1965)Le probléme de Dirichlet pour les équations elliptiques du second ordre á coefficients discontinues Ann. Inst. Fourier 15 541-550
  • [6] Sickel W.(2004)An analysis of finite-dimensional approximations for the ground state solution of Bose-Einstein condensates Nonlinearity 17 429-447
  • [7] Stampacchia G.(2007)Finite dimensional approximations for the electronic ground state solution of a molecular system Math. Meth. Appl. Sci. 30 undefined-undefined
  • [8] Zhou A.(undefined)undefined undefined undefined undefined-undefined
  • [9] Zhou A.(undefined)undefined undefined undefined undefined-undefined