Viscosity solution theory of a class of nonlinear degenerate parabolic equations I. Uniqueness and existence of viscosity solutions

被引:1
作者
Zhan Y. [1 ]
机构
[1] Department of Applied Mathematics, Tsinghua University
基金
中国国家自然科学基金;
关键词
Anisotropic; Degenerate; p-Laplacian; Viscosity solution;
D O I
10.1007/BF02015135
中图分类号
学科分类号
摘要
In this part we construct a unique bounded Hölder continuous viscosity solution for the nonlinear PDEs with the evolution p-Laplacian equation and its anisotropic version as typical examples. The existence and properties of free boundaries will be discussed in part II.
引用
收藏
页码:136 / 144
页数:8
相关论文
共 21 条
  • [1] Martinson L.K., Paplov K.B., Unsteady Shear Flow of a Conducting Fluid with a Rheological Law, Magnit, Gidrodinamika, 2, pp. 50-58, (1970)
  • [2] Martinson L.K., Paplov K.B., The Effect of Magnetic Plasticity in Non-Newtonian Fluids, Magnit, Gidrodinamika, 3, pp. 69-75, (1969)
  • [3] Antonsev N., Axially Symmetric Problems of Gas Dynamics with Free Boundaries, Doldady Akad. Nauk SSSR, 216, pp. 473-476, (1974)
  • [4] Ladyzenskaja O.A., New Equations for the Description of Incompressible Fluids and Solvability in the Large Boundary Value Problem for Them, Proc. Steklov Inst. Math., 102, pp. 95-118, (1967)
  • [5] Caffarelli L.A., Vazquez J.L., Wolanski W.I., Lipschitz Continuity of Solutions and Interfaces of n-dimensional PME, Ind. Univ. Math. J., 36, 2, pp. 373-402, (1987)
  • [6] Payne L.E., Philippin G.A., Some Applications of the Maximum Principle in the Problem of Torisonal Creep, SIAM. J. Math. Anal., 33, pp. 446-455, (1977)
  • [7] Bian B.J., Dong G.C., The Comparison Principle and Uniqueness of Viscosity Solutions of Fully Nonlinear Second Order Parabolic Equations, Chin. Ann of Math., 11 B, 2, pp. 156-170, (1990)
  • [8] Chen Y.Z., Hölder Continuity of the Gradient of the Solutions of Certain Degenerate Parabolic Equations, Chin. Ann. Math., 8 B, 3, pp. 343-356, (1987)
  • [9] Di Benndetto E., Friedman M.A., Hölder Estimates for Nonlinear Degenerate Parabolic Systems, J. Reine Angrew. Math., 357, pp. 1-22, (1985)
  • [10] Di Benndetto E., Herrero M.A., On the Cauchy Problem and Initial Traces for a Degenerate Parabolic Equation, Trans. A.M.S., 314, 1, pp. 187-224, (1989)