Sodium-Ion Batteries (a Review)

被引:1
|
作者
A. M. Skundin
T. L. Kulova
A. B. Yaroslavtsev
机构
[1] Russian Academy of Sciences,Frumkin Institute of Physical Chemistry and Electrochemistry
[2] Russian Academy of Sciences,Kurnakov Institute of General and Inorganic Chemistry
来源
Russian Journal of Electrochemistry | 2018年 / 54卷
关键词
sodium-ion batteries; electrode materials; electrode processes; sodium incorporation; nonaqueous electrolytes;
D O I
暂无
中图分类号
学科分类号
摘要
State-of-the-art in the studies of sodium-ion batteries is discussed in comparison with their deeper developed lithium-ion analogs. The principal problem hindering the development of competitive sodium-ion batteries is the low effectiveness of the electrode materials at hand. The principal efforts in the formation of anodes for the sodium-ion batteries are reduced to the development of materials based on carbon, metals, alloys, and transition metal oxides. Cathode materials are searched among oxides (first of all, layered) and salt systems. Synthesis of electrolytes for the sodium-ion batteries is not sufficiently attended to. Nowadays it is sodium salt solutions in organic solvents that are dominated; however, polymer and solid electrolytes with sodium conductivity may be thought of as very perspective. Reference list contains 584 items.
引用
收藏
页码:113 / 152
页数:39
相关论文
共 50 条
  • [1] Sodium-Ion Batteries (a Review)
    Skundin, A. M.
    Kulova, T. L.
    Yaroslavtsev, A. B.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2018, 54 (02) : 113 - 152
  • [2] A review on anode materials for lithium/sodium-ion batteries
    Prajapati, Abhimanyu Kumar
    Bhatnagar, Ashish
    JOURNAL OF ENERGY CHEMISTRY, 2023, 83 : 509 - 540
  • [3] Sodium and Sodium-Ion Batteries: 50 Years of Research
    Delmas, Claude
    ADVANCED ENERGY MATERIALS, 2018, 8 (17)
  • [4] A review on research progress in electrolytes for sodium-ion batteries
    Xie X.
    Murayama M.
    Guan S.
    Zhao X.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2020, 50 (03): : 247 - 260
  • [5] Interphases in Sodium-Ion Batteries
    Song, Junhua
    Xiao, Biwei
    Lin, Yuehe
    Xu, Kang
    Li, Xiaolin
    ADVANCED ENERGY MATERIALS, 2018, 8 (17)
  • [6] Recycling of sodium-ion batteries
    Zhao, Yun
    Kang, Yuqiong
    Wozny, John
    Lu, Jian
    Du, Hao
    Li, Chenglei
    Li, Tao
    Kang, Feiyu
    Tavajohi, Naser
    Li, Baohua
    NATURE REVIEWS MATERIALS, 2023, 8 (09) : 623 - 634
  • [7] Recent developments on aqueous sodium-ion batteries
    You, Yang
    Sang, Zhongsheng
    Liu, Jinping
    MATERIALS TECHNOLOGY, 2016, 31 (09) : 501 - 509
  • [8] Advanced Vanadium Oxides for Sodium-Ion Batteries
    Zhang, Xianghua
    Zhang, Zongbin
    Xu, Shitan
    Xu, Chen
    Rui, Xianhong
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (49)
  • [9] Transition metal oxides for sodium-ion batteries
    Su, Heng
    Jaffer, Saddique
    Yu, Haijun
    ENERGY STORAGE MATERIALS, 2016, 5 : 116 - 131
  • [10] The chance of sodium titanate anode for the practical sodium-ion batteries
    Chen, Feng
    Li, Haoyu
    Qiao, Xianyan
    Wang, Ruoyang
    Hu, Changyan
    Chen, Ting
    Niu, Yifan
    Zhong, Benhe
    Wu, Zhenguo
    Guo, Xiaodong
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2024, 72 : 226 - 244