Adaptive graph regularized non-negative matrix factorization with self-weighted learning for data clustering

被引:0
|
作者
Ziping Ma
Jingyu Wang
Huirong Li
Yulei Huang
机构
[1] North Minzu University,School of Mathematics and Information Science
[2] North Minzu University,Key Laboratory of Intelligent Information and Big Data Processing of Ningxia
[3] Shangluo University,School of Mathematics and Computer Application
来源
Applied Intelligence | 2023年 / 53卷
关键词
Non-negative matrix factorization; Adaptive local structure learning; Self-weighted learning; Data clustering;
D O I
暂无
中图分类号
学科分类号
摘要
In general, fully exploiting the local structure of the original data space can effectively improve the clustering performance of nonnegative matrix factorization (NMF). Therefore, graph-based NMF algorithms have been widely studied and applied. However, traditional graph-based NMF methods generally employ predefined models to construct similarity graphs, so that the clustering results depend heavily on the quality of the similarity graph. Furthermore, most of these methods follow the ideal assumption that the importance of different features is equal in the process of learning the similarity matrix, which results in irrelevant features being valued. To alleviate the above issues, this paper develops an adaptive graph regularized nonnegative matrix factorization with self-weighted learning (SWAGNMF) method. Firstly, the proposed method learns the similarity matrix flexibly and adaptively to explore the local structure of samples based on the assumption that data points with smaller distances should have a higher probability of adjacency. Furthermore, the self-weight matrix assigns different weights automatically according to the importance of features in the process of constructing similarity graph, i.e., discriminative features are assigned more significant weights than redundant features, which can effectively suppress irrelevant features and enhance the robustness of our model. Finally, considering the duality between samples and features, the proposed method is capable of exploring the local structures of both the data space and the feature space. An effective alternative optimization algorithm is proposed, and convergence is theoretically guaranteed. Extensive experiments on benchmark and synthetic datasets show that the proposed method outperforms compared state-of-the-art clustering methods.
引用
收藏
页码:28054 / 28073
页数:19
相关论文
共 50 条
  • [1] Adaptive graph regularized non-negative matrix factorization with self-weighted learning for data clustering
    Ma, Ziping
    Wang, Jingyu
    Li, Huirong
    Huang, Yulei
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28054 - 28073
  • [2] Robust Adaptive Graph Regularized Non-Negative Matrix Factorization
    He, Xiang
    Wang, Qi
    Li, Xuelong
    IEEE ACCESS, 2019, 7 : 83101 - 83110
  • [3] Graph regularized sparse non-negative matrix factorization for clustering
    Deng, Ping
    Wang, Hongjun
    Li, Tianrui
    Zhao, Hui
    Wu, Yanping
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 987 - 994
  • [4] Image clustering by hyper-graph regularized non-negative matrix factorization
    Zeng, Kun
    Yu, Jun
    Li, Cuihua
    You, Jane
    Jin, Taisong
    NEUROCOMPUTING, 2014, 138 : 209 - 217
  • [5] Graph Regularized Lp Smooth Non-negative Matrix Factorization for Data Representation
    Chengcai Leng
    Hai Zhang
    Guorong Cai
    Irene Cheng
    Anup Basu
    IEEE/CAAJournalofAutomaticaSinica, 2019, 6 (02) : 584 - 595
  • [6] Graph Regularized Lp Smooth Non-negative Matrix Factorization for Data Representation
    Leng, Chengcai
    Zhang, Hai
    Cai, Guorong
    Cheng, Irene
    Basu, Anup
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (02) : 584 - 595
  • [7] Adaptive local learning regularized nonnegative matrix factorization for data clustering
    Sheng, Yongpan
    Wang, Meng
    Wu, Tianxing
    Xu, Han
    APPLIED INTELLIGENCE, 2019, 49 (06) : 2151 - 2168
  • [8] Adaptive local learning regularized nonnegative matrix factorization for data clustering
    Yongpan Sheng
    Meng Wang
    Tianxing Wu
    Han Xu
    Applied Intelligence, 2019, 49 : 2151 - 2168
  • [9] Graph Regularized Robust Non-negative Matrix Factorization for Clustering and Selecting Differentially Expressed Genes
    Yu, Na
    Liu, Jin-Xing
    Gao, Ying-Lian
    Zheng, Chun-Hou
    Wang, Juan
    Wu, Ming-Juan
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 1752 - 1756
  • [10] Graph regularized discriminative non-negative matrix factorization for face recognition
    Xianzhong Long
    Hongtao Lu
    Yong Peng
    Wenbin Li
    Multimedia Tools and Applications, 2014, 72 : 2679 - 2699