Congruences for ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-regular overpartitions and Andrews’ singular overpartitions

被引:0
作者
Rupam Barman
Chiranjit Ray
机构
[1] Indian Institute of Technology Guwahati,Department of Mathematics
[2] Indian Institute of Technology Delhi,Department of Mathematics
关键词
Partition; Overpartition; Singular overpartition; Regular overpartition; Theta functions; Primary 05A17; 11P83;
D O I
10.1007/s11139-016-9860-7
中图分类号
学科分类号
摘要
Let A¯ℓ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{A}_{\ell }(n)$$\end{document} be the number of overpartitions of n into parts not divisible by ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}. In a recent paper, Shen calls the overpartitions enumerated by the function A¯ℓ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{A}_{\ell }(n)$$\end{document} as ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-regular overpartitions. In this paper, we find certain congruences for A¯ℓ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{A}_{\ell }(n)$$\end{document}, when ℓ=4,8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell =4, 8$$\end{document}, and 9. Recently, Andrews introduced the partition function C¯k,i(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{C}_{k, i}(n)$$\end{document}, called singular overpartition, which counts the number of overpartitions of n in which no part is divisible by k and only parts ≡±i(modk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\equiv \pm i\pmod {k}$$\end{document} may be over-lined. He also proved that C¯3,1(9n+3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{C}_{3, 1}(9n+3)$$\end{document} and C¯3,1(9n+6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{C}_{3, 1}(9n+6)$$\end{document} are divisible by 3. In this paper, we prove that C¯3,1(12n+11)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{C}_{3, 1}(12n+11)$$\end{document} is divisible by 144 which was conjectured to be true by Naika and Gireesh.
引用
收藏
页码:497 / 515
页数:18
相关论文
共 21 条
  • [1] Ahmed Z(2015)New congruences for Andrews’ singular overpartitions Int. J. Number Theory 11 2247-2264
  • [2] Baruah ND(2015)Singular overpartitions Int. J. Number Theory 11 1523-1533
  • [3] Andrews GE(2012)Analogues of Ramanujan’s partition identities and congruences arising from his theta functions and modular equations Ramanujan J. 28 385-407
  • [4] Baruah ND(2015)Arithmetic properties of Andrews’ singular overpartitions Int. J. Number Theory 11 1463-1476
  • [5] Ojah KK(2004)Overpartitions Trans. Am. Math. Soc. 356 1623-1635
  • [6] Chen SC(2013)Arithmetic properties of Adv. Appl. Math. 51 507-523
  • [7] Hirschhorn MD(2005)-regular partitions J. Comb. Math. Comb. Comput. 53 65-73
  • [8] Sellers JA(2009)Arithmetic relations for overpartitions Discrete Math. 309 2528-2532
  • [9] Corteel S(2011)A short note on the overpartition function Discrete Math. 311 835-840
  • [10] Lovejoy J(2003)Overpartition pairs modulo powers of 2 J. Comb. Theory A 103 393-401