Odd Chern-Simons Theory, Lie Algebra Cohomology and Characteristic Classes

被引:0
作者
Jian Qiu
Maxim Zabzine
机构
[1] Uppsala University,Department of Physics and Astronomy
来源
Communications in Mathematical Physics | 2010年 / 300卷
关键词
Partition Function; Zero Mode; Symplectic Form; Characteristic Classis; Symplectic Structure;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the generic 3D topological field theory within the AKSZ-BV framework. We use the Batalin-Vilkovisky (BV) formalism to construct explicitly cocycles of the Lie algebra of formal Hamiltonian vector fields and we argue that the perturbative partition function gives rise to secondary characteristic classes. We investigate a toy model which is an odd analogue of Chern-Simons theory, and we give some explicit computation of two point functions and show that its perturbation theory is identical to the Chern-Simons theory. We give a concrete example of the homomorphism taking Lie algebra cocycles to Q-characteristic classes, and we reinterpret the Rozansky-Witten model in this light.
引用
收藏
页码:789 / 833
页数:44
相关论文
共 23 条
[1]  
Alexandrov M.(1997)The Geometry of the master equation and topological quantum field theory Int. J. Mod. Phys. A 12 1405-113
[2]  
Kontsevich M.(2001)On the AKSZ formulation of the Poisson sigma model Lett. Math. Phys. 56 163-undefined
[3]  
Schwartz A.(1983)Stable cohomologies of a Lie algebra of formal vector fields with tensor coefficients Funkts. Anal. i Priloz. 17 62-undefined
[4]  
Zaboronsky O.(1979)Cohomology of infinite-dimensional Lie algebras and characteristic classes of foliations J. Math. Sci. 11 6-undefined
[5]  
Cattaneo A.S.(2008)Characteristic classes of J. Homotopy Relat. Struct. 3 65-undefined
[6]  
Felder G.(2009) algebras J. Geom. Phys. 59 555-undefined
[7]  
Fuks D.B.(1999)Graph cohomology classes in the Batalin-Vilkovisky formalism Compositio Math. 115 71-undefined
[8]  
Fuks D.B.(1999)Rozansky-Witten invariants via Atiyah classes Compositio Math. 115 115-undefined
[9]  
Hamilton A.(2009)Rozansky-Witten invariants via formal geometry JHEP 0909 024-undefined
[10]  
Lazarev A.(2007)On the AKSZ formulation of the Rozansky-Witten theory and beyond Lett. Math. Phys. 79 143-undefined