The logarithmic energy of zeros and poles of a rational function

被引:0
作者
V. N. Dubinin
机构
[1] Far-Eastern Federal University,
[2] Institute of Applied Mathematics,undefined
来源
Siberian Mathematical Journal | 2016年 / 57卷
关键词
rational function; Zolotarev fraction; lemniscate; logarithmic energy;
D O I
暂无
中图分类号
学科分类号
摘要
On assuming that certain lemniscates of a rational function are connected, we establish some sharp inequality that involves the logarithmic energy of a discrete charge concentrated at the zeros and poles of this function and the absolute values of its derivatives at these points. The equality in this estimate is attained for specially arranged zeros and poles of a suitable Zolotarev fraction and for special distributions of charge.
引用
收藏
页码:981 / 986
页数:5
相关论文
共 8 条
  • [1] Brauchart J. S.(2012)The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere Contemp. Math. 578 31-61
  • [2] Hardin D. P.(2001)The reduced module of the complex sphere J. Math. Sci. (New York) 105 2165-2179
  • [3] Saff E. B.(2014)On one extremal problem for complex polynomials with constraints on critical values Sib. Math. J. 55 63-71
  • [4] Dubinin V. N.(2010)Chebyshev representation for rational functions Sb. Math. 201 1579-1598
  • [5] Kovalev L. V.(2015)Circular symmetrization of condensers on Riemann surfaces Sb. Math. 206 61-86
  • [6] Dubinin V. N.(undefined)undefined undefined undefined undefined-undefined
  • [7] Bogatyrev A. B.(undefined)undefined undefined undefined undefined-undefined
  • [8] Dubinin V. N.(undefined)undefined undefined undefined undefined-undefined