Finite groups with subnormal Schmidt subgroups

被引:0
|
作者
V. A. Vedernikov
机构
[1] Moscow City Pedagogical University,
来源
Algebra and Logic | 2007年 / 46卷
关键词
finite group; Frobenius group; Schmidt subgroup; subnormal subgroup;
D O I
暂无
中图分类号
学科分类号
摘要
We give a complete description of the structure of finite non-nilpotent groups all Schmidt subgroups of which are subnormal.
引用
收藏
页码:363 / 372
页数:9
相关论文
共 50 条
  • [1] Finite groups with σ-subnormal Schmidt subgroups
    Yi, Xiaolan
    Kamornikov, S. F.
    JOURNAL OF ALGEBRA, 2020, 560 : 181 - 191
  • [2] Finite groups with subnormal Schmidt subgroups
    Vedernikov, V. A.
    ALGEBRA AND LOGIC, 2007, 46 (06) : 363 - 372
  • [3] On finite groups with σ-subnormal Schmidt subgroups
    Al-Sharo, Khaled A.
    Skiba, Alexander N.
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (10) : 4158 - 4165
  • [4] Finite Groups with σ-Subnormal Schmidt Subgroups
    Ballester-Bolinches, A.
    Kamornikov, S. F.
    Yi, X.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (05) : 2431 - 2440
  • [5] Finite Groups with Subnormal Schmidt Subgroups
    V. N. Knyagina
    V. S. Monakhov
    Siberian Mathematical Journal, 2004, 45 : 1075 - 1079
  • [6] Finite groups with subnormal Schmidt subgroups
    Knyagina, VN
    Monakhov, VS
    SIBERIAN MATHEMATICAL JOURNAL, 2004, 45 (06) : 1075 - 1079
  • [7] On finite groups with generalized σ-subnormal Schmidt subgroups
    Hu, Bin
    Huang, Jianhong
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (07) : 3127 - 3134
  • [8] Finite Groups with Generalized Subnormal Schmidt Subgroups
    F. Sun
    X. Yi
    S. F. Kamornikov
    Siberian Mathematical Journal, 2021, 62 : 364 - 369
  • [9] FINITE GROUPS WITH GENERALIZED SUBNORMAL SCHMIDT SUBGROUPS
    Sun, F.
    Yi, X.
    Kamornikov, S. F.
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (02) : 364 - 369
  • [10] Finite Groups with P-Subnormal Schmidt Subgroups
    Yi, Xiaolan
    Xu, Zhuyan
    Kamornikov, S. F.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2024, 325 (SUPPL 1) : S231 - S238