Detecting bit-flip errors in a logical qubit using stabilizer measurements

被引:0
作者
D. Ristè
S. Poletto
M.-Z. Huang
A. Bruno
V. Vesterinen
O.-P. Saira
L. DiCarlo
机构
[1] QuTech and Kavli Institute of Nanoscience,
[2] Delft University of Technology,undefined
[3] Huygens-Kamerlingh Onnes Laboratory,undefined
[4] Leiden Institute of Physics,undefined
[5] Leiden University,undefined
[6] Present address: VTT Technical Research Centre of Finland,undefined
[7] PO Box 1000,undefined
[8] 02044 VTT,undefined
[9] Finland,undefined
[10] Present address: Low Temperature Laboratory (OVLL),undefined
[11] Aalto University,undefined
[12] PO Box 15100,undefined
[13] FI-00076 Aalto,undefined
[14] Finland,undefined
来源
Nature Communications | / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Quantum data are susceptible to decoherence induced by the environment and to errors in the hardware processing it. A future fault-tolerant quantum computer will use quantum error correction to actively protect against both. In the smallest error correction codes, the information in one logical qubit is encoded in a two-dimensional subspace of a larger Hilbert space of multiple physical qubits. For each code, a set of non-demolition multi-qubit measurements, termed stabilizers, can discretize and signal physical qubit errors without collapsing the encoded information. Here using a five-qubit superconducting processor, we realize the two parity measurements comprising the stabilizers of the three-qubit repetition code protecting one logical qubit from physical bit-flip errors. While increased physical qubit coherence times and shorter quantum error correction blocks are required to actively safeguard the quantum information, this demonstration is a critical step towards larger codes based on multiple parity measurements.
引用
收藏
相关论文
共 58 条
[1]  
Devoret MH(2013)Superconducting circuits for quantum information: an outlook Science 339 1169-1174
[2]  
Schoelkopf RJ(1995)Scheme for reducing decoherence in quantum computer memory Phys. Rev. A 52 R2493-R2496
[3]  
Shor PW(1996)Good quantum error-correcting codes exist Phys. Rev. A 54 1098-1105
[4]  
Calderbank AR(1996)Mixed-state entanglement and quantum error correction Phys. Rev. A 54 3824-3851
[5]  
Shor PW(1996)Perfect quantum error correcting code Phys. Rev. Lett. 77 198-201
[6]  
Bennett CH(1996)Error correcting codes in quantum theory Phys. Rev. Lett. 77 793-797
[7]  
DiVincenzo DP(1998)Experimental quantum error correction Phys. Rev. Lett. 81 2152-2155
[8]  
Smolin JA(2004)Realization of quantum error correction Nature 432 602-605
[9]  
Wootters WK(2011)Experimental repetitive quantum error correction Science 332 1059-1061
[10]  
Laflamme R(2005)Demonstration of quantum error correction using linear optics Phys. Rev. A 71 052332-385