Uniaxial experimental study of the acoustic emission and deformation behavior of composite rock based on 3D digital image correlation (DIC)

被引:0
作者
Jian-Long Cheng
Sheng-Qi Yang
Kui Chen
Dan Ma
Feng-Yuan Li
Li-Ming Wang
机构
[1] China University of Mining and Technology,State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering
[2] China Railway Tunnel Group Co.,State Key Laboratory of Shield Machine and Boring Technology
[3] Ltd.,undefined
来源
Acta Mechanica Sinica | 2017年 / 33卷
关键词
Uniaxial compression tests on composite rock; Anisotropy; Elastic constant; Failure mode; 3D digital image correlation; Acoustic emission; Strain field;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic emission technique was used to monitor the acoustic signal characteristics of composite rock specimens during the entire loading process. At the same time, an optical non-contact 3D digital image correlation technique was used to study the evolution of axial strain field and the maximal strain field before and after the peak strength at different stress levels during the loading process. The effect of bedding plane inclination on the deformation and strength during uniaxial loading was analyzed. The methods of solving the elastic constants of hard and weak rock were described. The damage evolution process, deformation and failure mechanism, and failure mode during uniaxial loading were fully determined. The experimental results show that the θ=0∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta = 0{^{\circ }}$$\end{document}–45∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$45{^{\circ }}$$\end{document} specimens had obvious plastic deformation during loading, and the brittleness of the θ=60∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta = 60{^{\circ }}$$\end{document}–90∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$90{^{\circ }}$$\end{document} specimens gradually increased during the loading process. When the anisotropic angle θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} increased from 0∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0{^{\circ }}$$\end{document} to 90∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$90{^{\circ }}$$\end{document}, the peak strength, peak strain, and apparent elastic modulus all decreased initially and then increased. The failure mode of the composite rock specimen during uniaxial loading can be divided into three categories: tensile fracture across the discontinuities (θ=0∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta = 0{^{\circ }}$$\end{document}–30∘)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$30{^{\circ }})$$\end{document}, sliding failure along the discontinuities (θ=45∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta = 45{^{\circ }}$$\end{document}–75∘)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$75{^{\circ }})$$\end{document}, and tensile-split along the discontinuities (θ=90∘)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta = 90{^{\circ }})$$\end{document}. The axial strain of the weak and hard rock layers in the composite rock specimen during the loading process was significantly different from that of the θ=0∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta = 0{^{\circ }}$$\end{document}–45∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$45{^{\circ }}$$\end{document} specimens and was almost the same as that of the θ=60∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta = 60{^{\circ }}$$\end{document}–90∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$90{^{\circ }}$$\end{document} specimens. As for the strain localization highlighted in the maximum principal strain field, the θ=0∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta = 0{^{\circ }}$$\end{document}–30∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$30{^{\circ }}$$\end{document} specimens appeared in the rock matrix approximately parallel to the loading direction, while in the θ=45∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta = 45{^{\circ }}$$\end{document}–90∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$90{^{\circ }}$$\end{document} specimens it appeared at the hard and weak rock layer interface.
引用
收藏
页码:999 / 1021
页数:22
相关论文
共 52 条
[1]  
Barla G(2016)Full-face excavation of large tunnels in difficult conditions J. Rock Mech. Geotech. Eng. 8 294-303
[2]  
Tien YM(2006)An experimental investigation of the failure mechanism of simulated transversely isotropic rocks Int. J. Rock Mech. Min. Sci. 43 1163-1181
[3]  
Kuo MC(2013)Borehole stability analysis accounting for anisotropies in drilling to weak bedding planes Int. J. Rock Mech. Min. Sci. 60 160-170
[4]  
Juang CH(2008)Ground behaviour and rock mass composition in underground excavations Tunn. Undergr. Space Technol. 23 46-64
[5]  
Zhang JC(2003)Anisotropic strength and deformational behavior of Himalayan schists Int. J. Rock Mech. Min. Sci. 40 3-23
[6]  
Stille H(2002)An orthotropic cosserat elasto-plastic model for layered rocks Rock Mech. Rock Eng. 35 161-170
[7]  
Palmström A(2001)A failure criterion for transversely isotropic rocks Int. J. Rock Mech. Min. Sci. 38 399-412
[8]  
Nasseri MHB(1985)Applications of digital image correlation techniques to experimental mechanics Exp. Mech. 25 232-244
[9]  
Rao KS(1999)Digital volume correlation: three-dimensional strain mapping using X-ray tomography Exp. Mech. 39 217-226
[10]  
Ramamurthy T(2009)Accurate measurement of satellite antenna surface using 3D digital Image correlation technique Strain 45 194-200