Improved scales of spaces and elliptic boundary-value problems. I

被引:0
作者
Mikhailets V.A. [1 ]
Murach A.A. [2 ]
机构
[1] Institute of Mathematics, Ukrainian Academy of Sciences, Kiev
[2] Chernigov Technological University, Chernigov
关键词
Hilbert Space; Vector Function; Functional Parameter; Inverse Operator; Regular Variation;
D O I
10.1007/s11253-006-0064-y
中图分类号
学科分类号
摘要
We study improved scales of functional Hilbert spaces over ℝ n and smooth manifolds with boundary. The isotropic Hörmander-Volevich-Paneyakh spaces are elements of these scales. The theory of elliptic boundary-value problems in these spaces is developed. © 2006 Springer Science+Business Media, Inc.
引用
收藏
页码:244 / 262
页数:18
相关论文
共 49 条
[21]   Existence of solutions for nonlinear elliptic boundary value problems [J].
Shao Rong ;
Niu Xin ;
Shen Zu-he .
Applied Mathematics and Mechanics, 2003, 24 (1) :99-108
[22]   Averaging of Multifrequency Boundary-Value Problems with Linearly Transformed Arguments [J].
Berezovs'ka I.V. .
Journal of Mathematical Sciences, 2014, 198 (3) :235-244
[23]   Boundary Behavior of Solutions to Singular Boundary Value Problems for Nonlinear Elliptic Equations [J].
Zhang, Zhijun ;
Li, Xiaohong ;
Zhao, Yuanzhang .
ADVANCED NONLINEAR STUDIES, 2010, 10 (02) :249-261
[24]   On the Solvability of Heat Boundary Value Problems in Sobolev Spaces [J].
M. T. Jenaliyev ;
M. T. Kosmakova ;
Zh. M. Tuleutaeva .
Lobachevskii Journal of Mathematics, 2022, 43 :2133-2144
[25]   On the Solvability of Heat Boundary Value Problems in Sobolev Spaces [J].
Jenaliyev, M. T. ;
Kosmakova, M. T. ;
Tuleutaeva, Zh. M. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (08) :2133-2144
[26]   Inverse problems for evolution equations with fractional integrals at boundary-value conditions [J].
Glushak A.V. .
Journal of Mathematical Sciences, 2010, 164 (4) :518-530
[27]   Boundary-value problems for a nonlinear hyperbolic equation with Lévy Laplacian [J].
I. I. Kovtun ;
M. N. Feller .
Ukrainian Mathematical Journal, 2013, 64 :1688-1697
[28]   Representation of the Solutions of Boundary-value Problems for the Schrödinger Equation in a Hilbert Space [J].
Pokutnyi A.A. .
Journal of Mathematical Sciences, 2015, 205 (6) :821-831
[29]   Application of the Ergodic Theory to the Investigation of Boundary-Value Problems with Periodic Operator Coefficients [J].
A. A. Boichuk ;
A. A. Pokutnyi .
Ukrainian Mathematical Journal, 2013, 65 :366-376
[30]   Application of the Ergodic Theory to the Investigation of Boundary-Value Problems with Periodic Operator Coefficients [J].
Boichuk, A. A. ;
Pokutnyi, A. A. .
UKRAINIAN MATHEMATICAL JOURNAL, 2013, 65 (03) :366-376