Temperley–Lieb algebra, Yang-Baxterization and universal gate

被引:0
作者
Gangcheng Wang
Kang Xue
Chunfang Sun
Chengcheng Zhou
Taotao Hu
Qingyong Wang
机构
[1] Northeast Normal University,Department of Physics
来源
Quantum Information Processing | 2010年 / 9卷
关键词
Temperley–Lieb algebra; Entanglement; Yang–Baxter system; 03.65.Vf; 02.10.Kn; 03.67.Lx;
D O I
暂无
中图分类号
学科分类号
摘要
A method of constructing n2 × n2 matrix realization of Temperley–Lieb algebras is presented. The single loop of these realizations are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d=\sqrt{n}}$$\end{document}. In particular, a 9 × 9-matrix realization with single loop \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d=\sqrt{3}}$$\end{document} is discussed. A unitary Yang–Baxter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\breve{R}\theta,q_{1},q_{2})}$$\end{document} matrix is obtained via the Yang-Baxterization process. The entanglement properties and geometric properties (i.e., Berry Phase) of this Yang–Baxter system are explored.
引用
收藏
页码:699 / 710
页数:11
相关论文
empty
未找到相关数据