A method of constructing n2 × n2 matrix realization of Temperley–Lieb algebras is presented. The single loop of these realizations are \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${d=\sqrt{n}}$$\end{document}. In particular, a 9 × 9-matrix realization with single loop \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${d=\sqrt{3}}$$\end{document} is discussed. A unitary Yang–Baxter \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\breve{R}\theta,q_{1},q_{2})}$$\end{document} matrix is obtained via the Yang-Baxterization process. The entanglement properties and geometric properties (i.e., Berry Phase) of this Yang–Baxter system are explored.