Temperley–Lieb algebra, Yang-Baxterization and universal gate

被引:0
|
作者
Gangcheng Wang
Kang Xue
Chunfang Sun
Chengcheng Zhou
Taotao Hu
Qingyong Wang
机构
[1] Northeast Normal University,Department of Physics
来源
Quantum Information Processing | 2010年 / 9卷
关键词
Temperley–Lieb algebra; Entanglement; Yang–Baxter system; 03.65.Vf; 02.10.Kn; 03.67.Lx;
D O I
暂无
中图分类号
学科分类号
摘要
A method of constructing n2 × n2 matrix realization of Temperley–Lieb algebras is presented. The single loop of these realizations are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d=\sqrt{n}}$$\end{document}. In particular, a 9 × 9-matrix realization with single loop \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d=\sqrt{3}}$$\end{document} is discussed. A unitary Yang–Baxter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\breve{R}\theta,q_{1},q_{2})}$$\end{document} matrix is obtained via the Yang-Baxterization process. The entanglement properties and geometric properties (i.e., Berry Phase) of this Yang–Baxter system are explored.
引用
收藏
页码:699 / 710
页数:11
相关论文
共 50 条
  • [1] Temperley-Lieb algebra, Yang-Baxterization and universal gate
    Wang, Gangcheng
    Xue, Kang
    Sun, Chunfang
    Zhou, Chengcheng
    Hu, Taotao
    Wang, Qingyong
    QUANTUM INFORMATION PROCESSING, 2010, 9 (06) : 699 - 710
  • [2] Universal quantum gate, Yang-Baxterization and Hamiltonian
    Zhang, Y
    Kauffman, LH
    Ge, ML
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2005, 3 (04) : 669 - 678
  • [3] EXTENDED BIRMAN-WENZL ALGEBRA AND YANG-BAXTERIZATION
    GE, ML
    XUE, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (08): : 1865 - 1873
  • [4] Using computer algebra for yang-baxterization applied to quantum computing
    Velez, Mario
    Ospina, Juan
    QUANTUM INFORMATION AND COMPUTATION IV, 2006, 6244
  • [5] Yang-Baxterization of the quantum dilogarithm
    Volkov A.Yu.
    Faddeev L.D.
    Journal of Mathematical Sciences, 1998, 88 (2) : 202 - 207
  • [6] EXPLICIT TRIGONOMETRIC YANG-BAXTERIZATION
    GE, ML
    WU, YS
    XUE, K
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (21): : 3735 - 3779
  • [7] Universal quantum gates via Yang-Baxterization of dihedral quantum double
    Velez, Mario
    Ospina, Juan
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT 1, 2007, 4431 : 120 - +
  • [8] YANG-BAXTERIZATION OF BRAID GROUP-REPRESENTATIONS
    CHENG, Y
    GE, ML
    XUE, K
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 136 (01) : 195 - 208
  • [9] NEW SOLUTIONS OF THE YANG-BAXTER EQUATION AND THEIR YANG-BAXTERIZATION
    COUTURE, M
    CHENG, Y
    GE, ML
    XUE, K
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (04): : 559 - 576
  • [10] Algebraic structures behind the Yang-Baxterization process
    Ozdemir, C.
    Gahramanov, I.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 221 (02) : 1959 - 1980