Attractors of Reaction Diffusion Systems on Infinite Lattices

被引:70
作者
W.-J. Beyn
S. Yu Pilyugin
机构
[1] Bielefeld University,Department of Mathematics
[2] St. Petersburg State University,Faculty of Mathematics and Mechanics
关键词
infinite lattices; global attractors; Sobolev space;
D O I
10.1023/B:JODY.0000009745.41889.30
中图分类号
学科分类号
摘要
In this paper, we study global attractors for implicit discretizations of a semilinear parabolic system on the line. It is shown that under usual dissipativity conditions there exists a global (Zu,Zρ)-attractor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$A$$ \end{document} in the sense of Babin-Vishik and Mielke-Schneider. Here Zρ is a weighted Sobolev space of infinite sequences with a weight that decays at infinity, while the space Zu carries a locally uniform norm obtained by taking the supremum over all Zρ norms of translates. We show that the absorbing set containing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$A$$ \end{document} can be taken uniformly bounded (in the norm of Zu) for small time and space steps of the discretization. We establish the following upper semicontinuity property of the attractor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$A$$ \end{document} for a scalar equation: if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$A$$ \end{document}N is the global attractor for a discretization of the same parabolic equation on the finite segment [−N,N] with Dirichlet boundary conditions, then the attractors \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$A$$ \end{document}N (properly embedded into the space Zu) tend to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$A$$ \end{document} as N→∞ with respect to the Hausdorff semidistance generated by the norm in Zρ. We describe a possibility of “embedding” certain invariant sets of some planar dynamical systems into the global attractor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$A$$ \end{document}. Finally, we give an example in which the global attractor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$A$$ \end{document} is infinite-dimensional.
引用
收藏
页码:485 / 515
页数:30
相关论文
共 23 条
[1]  
Afraimovich V.(1993)Travelling waves in lattice models of multi-dimensional and multi-component media: I. General hyperbolic properties Nonlinearity 6 429-455
[2]  
Pesin Y.(1990)Attractors of partial differential evolution equations in an unbounded domain Proc. Roy. Soc. Edinburgh Sect. A 116 221-243
[3]  
Babin A. V.(2001)Attractors for lattice dynamical systems Internat. J. Bifur. Chaos 11 143-153
[4]  
Vishik M. I.(1994)Thermodynamic limit of the Ginzburg-Landau equations Nonlinearity 7 1175-1190
[5]  
Bates P. W.(1996)Pseudotrajectories generated by a discretization of a parabolic equation J. Dynam. Differential Equations. 8 281-297
[6]  
Lu K.(1994)Compact attractors for reaction-diffusion equations in ℝ C. R. Acad. Sci. Paris Sér. I 319 147-151
[7]  
Wang B.(1988)Upper semicontinuity of attractors for approximations of semigroups and partial differential equations Math. of Comp. 50 89-123
[8]  
Collet P.(1989)Lower semicontinuity of attractors of gradient systems and applications Ann. Mat. Pura Appl. CLIV 281-326
[9]  
Eirola T.(1995)Attractors for modulation equations on unbounded domains—existence and comparison Nonlinearity 8 743-768
[10]  
Pilyugin S. Y.(1997)The complex Ginzburg-Landau equation on large and unbounded domains: sharper bounds and attractors Nonlinearity 10 199-222