Practical 3D human skeleton tracking based on multi-view and multi-Kinect fusion

被引:0
|
作者
Manh-Hung Nguyen
Ching-Chun Hsiao
Wen-Huang Cheng
Ching-Chun Huang
机构
[1] HCMC University of Technology and Education,Faculty of Electrical Electronic Engineering
[2] National Yang Ming Chiao Tung University,Department of Computer Science
[3] National Yang Ming Chiao Tung University,Institute of Electronics
来源
Multimedia Systems | 2022年 / 28卷
关键词
Multi-Kinect skeleton tracking; OpenPose; Sensor fusion; Left–right confusion; Self-occlusion; Lost tracking;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we proposed a multi-view system for 3D human skeleton tracking based on multi-cue fusion. Multiple Kinect version 2 cameras are applied to build up a low-cost system. Though Kinect cameras can detect 3D skeleton from their depth sensors, some challenges of skeleton extraction still exist, such as left–right confusion and severe self-occlusion. Moreover, human skeleton tracking systems often have difficulty in dealing with lost tracking. These challenges make robust 3D skeleton tracking nontrivial. To address these challenges in a unified framework, we first correct the skeleton's left–right ambiguity by referring to the human joints extracted by OpenPose. Unlike Kinect, and OpenPose extracts target joints by learning-based image analysis to differentiate a person's front side and backside. With help from 2D images, we can correct the left–right skeleton confusion. On the other hand, we find that self-occlusion severely degrades Kinect joint detection owing to incorrect joint depth estimation. To alleviate the problem, we reconstruct a reference 3D skeleton by back-projecting the corresponding 2D OpenPose joints from multiple cameras. The reconstructed joints are less sensitive to occlusion and can be served as 3D anchors for skeleton fusion. Finally, we introduce inter-joint constraints into our probabilistic skeleton tracking framework to trace all joints simultaneously. Unlike conventional methods that treat each joint individually, neighboring joints are utilized to position each other. In this way, when joints are missing due to occlusion, the inter-joint constraints can ensure the skeleton consistency and preserve the length between neighboring joints. In the end, we evaluate our method with five challenging actions by building a real-time demo system. It shows that the system can track skeletons stably without error propagation and vibration. The experimental results also reveal that the average localization error is smaller than that of conventional methods.
引用
收藏
页码:529 / 552
页数:23
相关论文
共 28 条
  • [1] Practical 3D human skeleton tracking based on multi-view and multi-Kinect fusion
    Nguyen, Manh-Hung
    Hsiao, Ching-Chun
    Cheng, Wen-Huang
    Huang, Ching-Chun
    MULTIMEDIA SYSTEMS, 2022, 28 (02) : 529 - 552
  • [2] Multi-kinect Skeleton Fusion for Enactive Games
    Stovring, Nikolaj Marimo
    Kaspersen, Esbern Torgard
    Korsholm, Jeppe Milling
    Najim, Yousif Ali Hassan
    Makhlouf, Soraya
    Khani, Alireza
    Erkut, Cumhur
    INTERACTIVITY, GAME CREATION, DESIGN, LEARNING, AND INNOVATION, 2018, 196 : 173 - 180
  • [3] Research on Multi-view 3D Reconstruction of Human Motion Based on OpenPose
    Li, Xuhui
    Cai, Cheng
    Zhou, Hengyi
    COGNITIVE COMPUTING, ICCC 2021, 2022, 12992 : 72 - 78
  • [4] AirPose: Multi-View Fusion Network for Aeria 3D Human Pose and Shape Estimation
    Saini, Nitin
    Bonetto, Elia
    Price, Eric
    Ahmad, Aamir
    Black, Michael J.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 4805 - 4812
  • [5] End-to-End Multi-View Fusion for 3D Object Detection in LiDAR Point Clouds
    Zhou, Yin
    Sun, Pei
    Zhang, Yu
    Anguelov, Dragomir
    Gao, Jiyang
    Ouyang, Tom
    Guo, James
    Ngiam, Jiquan
    Vasudevan, Vijay
    CONFERENCE ON ROBOT LEARNING, VOL 100, 2019, 100
  • [6] Multi-View Human Action Recognition Using Skeleton Based-FineKNN with Extraneous Frame Scrapping Technique
    Malik, Najeeb Ur Rehman
    Sheikh, Usman Ullah
    Abu-Bakar, Syed Abdul Rahman
    Channa, Asma
    SENSORS, 2023, 23 (05)
  • [7] Exploiting Multi-Modal Synergies for Enhancing 3D Multi-Object Tracking
    Xu, Xinglong
    Ren, Weihong
    Chen, Xi'ai
    Fan, Huijie
    Han, Zhi
    Liu, Honghai
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (10): : 8643 - 8650
  • [8] Relation3DMOT: Exploiting Deep Affinity for 3D Multi-Object Tracking from View Aggregation
    Chen, Can
    Zanotti Fragonara, Luca
    Tsourdos, Antonios
    SENSORS, 2021, 21 (06) : 1 - 16
  • [9] Fusion of multi-sensor passive and active 3D imagery
    Fay, DA
    Verly, JG
    Braun, MI
    Frost, C
    Racamato, JP
    Waxman, AM
    ENHANCED AND SYNTHETIC VISION 2001, 2001, 4363 : 219 - 230
  • [10] Multi-Modal Fusion Based on Depth Adaptive Mechanism for 3D Object Detection
    Liu, Zhanwen
    Cheng, Juanru
    Fan, Jin
    Lin, Shan
    Wang, Yang
    Zhao, Xiangmo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 707 - 717