Homogenization of variational problems in manifold valued BV-spaces

被引:0
|
作者
Jean-François Babadjian
Vincent Millot
机构
[1] Université Joseph Fourier,Laboratoire Jean Kuntzmann
[2] CMAP,CNRS, UMR 7598 Laboratoire Jacques
[3] Ecole Polytechnique,Louis Lions
[4] Univesité  Paris Diderot,undefined
[5] Paris 7,undefined
来源
Calculus of Variations and Partial Differential Equations | 2009年 / 36卷
关键词
74Q05; 49J45; 49Q20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper extends the result of Babadjian and Millot (preprint, 2008) on the homogenization of integral functionals with linear growth defined for Sobolev maps taking values in a given manifold. Through a Γ-convergence analysis, we identify the homogenized energy in the space of functions of bounded variation. It turns out to be finite for BV-maps with values in the manifold. The bulk and Cantor parts of the energy involve the tangential homogenized density introduced in Babadjian and Millot (preprint, 2008), while the jump part involves an homogenized surface density given by a geodesic type problem on the manifold.
引用
收藏
页码:7 / 47
页数:40
相关论文
共 50 条