共 41 条
- [31] Shloof A.M., Senu N., Ahmadian A., Salahshour S., An efficient operation matrix method for solving fractal–fractional differential equations with generalized Caputo-type fractional–fractal derivative, Math. Comput. Simul., 188, pp. 415-435, (2021)
- [32] Salahshour S., Ahmadian A., Allahviranloo T., A new fractional dynamic cobweb model based on non-singular kernel derivatives, Chaos, Solitons Fractals, 145, (2021)
- [33] Singh J., Ahmadian A., Rathore S., Kumar D., Baleanu D., Salimi M., Salahshour S., An efficient computational approach for local fractional Poisson equation in fractal media, Numer Meth Part Different Equat, 37, 2, pp. 1439-1448, (2021)
- [34] Yadav S., Pandey R.K., Shukla A., K, Numerical approximations of Atangana-Baleanu Caputo derivative and its application, Chaos, Solitons & Fractals., 118, pp. 58-64, (2019)
- [35] Atangana A., Baleanu D., New fractional derivatives with nonlocal and non-sin- gular kernel: theory and application to heat transfer model, Therm. Sci., 20, 2, pp. 763-769, (2016)
- [36] Abdeljawad T., Baleanu D., Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J Nonlin- ear Sci Appl., 10, 3, pp. 1098-1107, (2016)
- [37] Caputo M., Fabrizio M., A new definition of fractional derivative without singular kernel, Progr Fract Differ Appl., 1, 2, pp. 1-13, (2015)
- [38] Atangana A., Gomez-Aguilar J., Numerical approximation of riemann-liouville definition of fractional derivative: from riemann-liouville to atangana-baleanu, Numer Methods Partial Differ Equ., 34, 5, pp. 1502-1523, (2018)
- [39] Atangana A., Koca I., Chaos in a simple nonlinear system with atangana–baleanu derivatives with fractional order, Chaos Solitons Fractals., 89, pp. 447-454, (2016)
- [40] Gao W., Ghanbari B., Baskonus H.M., New numerical simulations for some real world problems with Atangana-Baleanu fractional derivative, Chaos, Solitons Fractals, 128, pp. 34-43, (2019)