On rough singular integrals related to homogeneous mappings

被引:0
作者
Feng Liu
Suzhen Mao
Huoxiong Wu
机构
[1] Shandong University of Science and Technology,College of Mathematics and Systems Science
[2] Xiamen University,School of Mathematical Sciences
来源
Collectanea Mathematica | 2016年 / 67卷
关键词
Singular integrals; Rough kernels; Homogeneous mappings; Extrapolation; 42B20; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the singular integrals related to homogeneous mappings as well as the corresponding maximal truncated singular integrals. Under the rather weak size conditions on the integral kernels both on the unit sphere and in the radial direction, the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} bounds for such operators are given, which essentially improve and generalize some known results.
引用
收藏
页码:113 / 132
页数:19
相关论文
共 35 条
  • [1] Al-Qassem HM(2006) boundedness for singular integral operators with Kyungpook Math. J. 46 377-387
  • [2] Ali M(2008) kernels on product spaces Tamkang J. Math. 39 165-176
  • [3] Al-Qassem HM(2004)Singular integrals related to homogeneous mapping with rough kernels on product spaces Hokkaido Math. J. 33 551-569
  • [4] Ali M(2002)Singular integrals associated to homogeneous mappings with rough kernels J. Lond. Math. Soc. 66 153-174
  • [5] Al-Qassem HM(2000)Singular integrals with rough kernels in Mich. Math. J. 47 407-416
  • [6] Al-Salman A(1977)Singular ingegrals related to homogeneous mappings Bull. Am. Math. Soc. 83 569-645
  • [7] Pan Y(1956)Extension of Hardy spaces and their use in analysis Am. J. Math. 78 289-309
  • [8] Al-Salman A(2010)On singular integral Inter. Equa. Oper. Theory 68 151-161
  • [9] Pan Y(1986)On singular integral integral operators with rough kernel along surfaces Invent. Math. 84 541-561
  • [10] Cheng LC(1979)Maximal and singular integral operators via Fourier transform estimates Proc. Am. Math. Soc. 74 266-270