Dew computing-assisted cognitive Intelligence-inspired smart environment for diarrhea prediction

被引:0
|
作者
Yasir Afaq
Ankush Manocha
机构
[1] Lovely Professional University,
来源
Computing | 2022年 / 104卷
关键词
Internet of Things; Dew Analytics; Deep Learning; Multi-scaled GRU; Diarrhea prediction; 68Txx; 68T05; 68Uxx; 68U20;
D O I
暂无
中图分类号
学科分类号
摘要
Diarrhea is one of the most common infectious diseases that affect people of all ages and is a serious public health concern around the world. The main causes of diarrhea include food quality, water, indoor meteorological, and outdoor meteorological conditions. In this study, a dew computing-assisted smart monitoring framework is developed to evaluate the relationship among the health, indoor meteorological, and food factors of an individual to predict the cause of diarrhea with the scale of severity. Smart sensors are utilized at the physical layer to collect the targeted parameters of health, indoor meteorological, and food of the individual. The captured events are classified at the cyber layer by utilizing the Probabilistic Weighted-Naïve Bayes (PW-NB) classification approach for quantifying abnormal health events. Furthermore, a Multi-scale Gated Recurrent Unit (M-GRU) is suggested to obtain the scale of severity by analyzing the correlation between irregular health, food, and environmental events. In this manner, the proposed model M-GRU has achieved a high precision value of (93.26%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$93.26\%$$\end{document}), whereas, LSTM, RNN, SVM achieved the precision value of (89.13%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$89.13\%$$\end{document}), (90.43%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$90.43\%$$\end{document}), (88.23%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$88.23\%$$\end{document}), respectively. In addition, the precision value of the PW-NB is (97.15%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$97.15\%$$\end{document}), which is also higher as compared to KNN (93.25%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$93.25\%$$\end{document}) and DT (96.91%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$96.91\%$$\end{document}). The outcome of the proposed solutions is shown the higher Precision values on dew computing and cloud computing. Moreover, a comparative analysis defines the prediction effectiveness of the proposed solution over several other decision-making solutions with regards to event classification, severity determination, monitoring stability, and prediction efficiency.
引用
收藏
页码:2511 / 2540
页数:29
相关论文
共 11 条
  • [1] Dew computing-assisted cognitive Intelligence-inspired smart environment for diarrhea prediction
    Afaq, Yasir
    Manocha, Ankush
    COMPUTING, 2022, 104 (11) : 2511 - 2540
  • [2] Fog computing-assisted path planning for smart shopping
    Aliyu, Farouq
    Abdeen, Mohammad A. R.
    Sheltami, Tarek
    Alfraidi, Tareq
    Ahmed, Mohamed H.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (25) : 38827 - 38852
  • [3] Fog computing-assisted path planning for smart shopping
    Farouq Aliyu
    Mohammad A. R. Abdeen
    Tarek Sheltami
    Tareq Alfraidi
    Mohamed H. Ahmed
    Multimedia Tools and Applications, 2023, 82 : 38827 - 38852
  • [4] LightDew: Lightweight Blockchain Assisted Dew Computing Framework for Smart Assisted Living
    Chatterjee, Sudip
    Bhattacharya, Pronaya
    De, Debashis
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (02) : 4804 - 4815
  • [5] Combining Edge Computing-Assisted Internet of Things Security with Artificial Intelligence: Applications, Challenges, and Opportunities
    Rupanetti, Dulana
    Kaabouch, Naima
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [6] Dew computing-inspired health-meteorological factor analysis for early prediction of bronchial asthma
    Manocha, Ankush
    Bhatia, Munish
    Kumar, Gulshan
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2021, 179
  • [7] Artificial intelligence assisted Internet of Things based financial crisis prediction in FinTech environment
    Pustokhina, Irina, V
    Pustokhin, Denis A.
    Mohanty, Sachi Nandan
    Garcia, Paulo Alonso Gaona
    Garcia-Diaz, Vicente
    ANNALS OF OPERATIONS RESEARCH, 2023, 326 (SUPPL 1) : 27 - 28
  • [8] Cognitive Intelligence Assisted Fog-Cloud Architecture for Generalized Anxiety Disorder (GAD) Prediction
    Ankush Manocha
    Ramandeep Singh
    Munish Bhatia
    Journal of Medical Systems, 2020, 44
  • [9] Cognitive Intelligence Assisted Fog-Cloud Architecture for Generalized Anxiety Disorder (GAD) Prediction
    Manocha, Ankush
    Singh, Ramandeep
    Bhatia, Munish
    JOURNAL OF MEDICAL SYSTEMS, 2020, 44 (01)
  • [10] Artificial intelligence based cognitive state prediction in an e-learning environment using multimodal data
    Gupta, Swadha
    Kumar, Parteek
    Tekchandani, Rajkumar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (24) : 64467 - 64498