On Errors Generated by Unitary Dynamics of Bipartite Quantum Systems

被引:0
作者
G. G. Amosov
A. S. Mokeev
机构
[1] Steklov Mathematical Institute of Russian Academy of Sciences,
来源
Lobachevskii Journal of Mathematics | 2020年 / 41卷
关键词
non-commutative operator graphs; covariant resolution of identity; symmetric Fock space; quantum anticliques;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2310 / 2315
页数:5
相关论文
共 25 条
[1]  
Shor P.(1995)Scheme for reducing decoherence in quantum memory Phys. Rev. A 52 2493-1174
[2]  
Knill E.(1997)Theory of error-correction codes Phys. Rev. A 55 900-1179
[3]  
Laflamme R.(2013)Zero-error communication via quantum channels, non-commutative graphs and a quantum Lovasz theta function IEEE Trans. Inform. Theory 59 1164-1443
[4]  
Duan R.(2015)On superactivation of zero-error capacities and reversibility of a quantum channel Commun. Math. Phys. 335 1159-209
[5]  
Severini S.(2020)Non-commutative graphs and quantum error correction for a two-mode quantum oscillator Quantum Inform. Process. 19 95-4605
[6]  
Winter A.(2018)On non-commutative operator graphs generated by covariant resolutions of identity Quantum Inform. Process. 17 325-2370
[7]  
Shirokov M. E.(2019)On linear structure of non-commutative operator graphs Lobachevskii J. Math. 40 1440-undefined
[8]  
Shulman T.(1977)Injectivity and operator spaces J. Funct. Anal. 24 156-undefined
[9]  
Amosov G. G.(2017)A “quantum” Ramsey theorem for operator systems Proc. Am. Math. Soc. 145 4595-undefined
[10]  
Mokeev A. S.(2019)On operator systems generated by reducible projective unitary representations of compact groups Turk. J. Math. 43 2366-undefined