Dimension Estimate of Polynomial Growth Holomorphic Functions

被引:0
作者
Gang Liu
机构
[1] Shanghai Key Laboratory of PMMP,School of Mathematical Sciences
[2] East China Normal University,undefined
关键词
Dimension estimate; Holomorphic functions; Gromov–Hausdorff convergence;
D O I
10.1007/s42543-021-00034-w
中图分类号
学科分类号
摘要
On a complete noncompact Kähler manifold Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{n}$$\end{document} (complex dimension) with nonnegative Ricci curvature and Euclidean volume growth, we prove that polynomial growth holomorphic functions of degree d has an dimension upper bound cdn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$cd^{n}$$\end{document}, where c depends only on n and the asymptotic volume ratio. Note that the power is sharp.
引用
收藏
页码:187 / 202
页数:15
相关论文
共 55 条
  • [1] Cheeger J(1999)Differentiability of Lipschitz functions on metric measure spaces Geom. Funct. Anal. 9 428-517
  • [2] Cheeger J(1996)Lower bounds on Ricci curvature and the almost rigidity of warped products Ann. Math. 144 189-237
  • [3] Colding T(1997)On the structure of spaces with Ricci curvature bounded below. I J. Differ. Geom. 46 406-480
  • [4] Cheeger J(2000)On the structure of spaces with Ricci curvature bounded below. II J. Differ. Geom. 54 13-35
  • [5] Colding T(2000)On the structure of spaces with Ricci curvature bounded below. III J. Differ. Geom. 54 37-74
  • [6] Cheeger J(1995)II, Linear growth harmonic functions on complete manifolds with nonnegative Ricci curvature Geom. Funct. Anal. 5 948-954
  • [7] Colding T(2002)On the singularities of spaces with bounded Ricci curvature Geom. Funct. Anal. 12 873-914
  • [8] Cheeger J(2021)Rectifiability of singular sets of noncollapsed limit spaces with Ricci curvature bounded below. Ann. Math 193 407-538
  • [9] Colding T(2006)Sharp dimension estimates of holomorphic functions and rigidity Trans. Amer. Math. Soc. 358 1435-1454
  • [10] Cheeger J(1997)Ricci curvature and volume convergence Ann. Math. 145 477-501