Interferometer techniques for gravitational-wave detection

被引:0
|
作者
Charlotte Bond
Daniel Brown
Andreas Freise
Kenneth A. Strain
机构
[1] University of Birmingham,School of Physics and Astronomy
[2] University of Glasgow,School of Physics and Astronomy
来源
Living Reviews in Relativity | 2016年 / 19卷
关键词
Gravitational waves; Gravitational-wave detectors; Laser interferometry; Optics; Simulations; Finesse;
D O I
暂无
中图分类号
学科分类号
摘要
Several km-scale gravitational-wave detectors have been constructed worldwide. These instruments combine a number of advanced technologies to push the limits of precision length measurement. The core devices are laser interferometers of a new kind; developed from the classical Michelson topology these interferometers integrate additional optical elements, which significantly change the properties of the optical system. Much of the design and analysis of these laser interferometers can be performed using well-known classical optical techniques; however, the complex optical layouts provide a new challenge. In this review, we give a textbook-style introduction to the optical science required for the understanding of modern gravitational wave detectors, as well as other high-precision laser interferometers. In addition, we provide a number of examples for a freely available interferometer simulation software and encourage the reader to use these examples to gain hands-on experience with the discussed optical methods.
引用
收藏
相关论文
共 50 条
  • [1] Interferometer techniques for gravitational-wave detection
    Bond, Charlotte
    Brown, Daniel
    Freise, Andreas
    Strain, Kenneth A.
    LIVING REVIEWS IN RELATIVITY, 2016, 19 : 1 - 221
  • [2] Interferometer Techniques for Gravitational-Wave Detection
    Freise, Andreas
    Strain, Kenneth
    LIVING REVIEWS IN RELATIVITY, 2010, 13
  • [3] Interferometer Techniques for Gravitational-Wave Detection
    Andreas Freise
    Kenneth Strain
    Living Reviews in Relativity, 2010, 13
  • [4] Publisher Correction: Interferometer techniques for gravitational-wave detection
    Charlotte Bond
    Daniel Brown
    Andreas Freise
    Kenneth A. Strain
    Living Reviews in Relativity, 2017, 20
  • [5] Sagnac interferometer for gravitational-wave detection
    Sun, KX
    Fejer, MM
    Gustafson, E
    Byer, RL
    PHYSICAL REVIEW LETTERS, 1996, 76 (17) : 3053 - 3056
  • [7] Interferometer techniques for gravitational-wave detection (vol 19, 3, 2017)
    Bond, Charlotte
    Brown, Daniel
    Freise, Andreas
    Strain, Kenneth A.
    LIVING REVIEWS IN RELATIVITY, 2017, 20
  • [8] A cryogenic silicon interferometer for gravitational-wave detection
    Adhikari, R. X.
    Arai, K.
    Brooks, A. F.
    Wipf, C.
    Aguiar, O.
    Altin, P.
    Barr, B.
    Barsotti, L.
    Bassiri, R.
    Bell, A.
    Billingsley, G.
    Birney, R.
    Blair, D.
    Bonilla, E.
    Briggs, J.
    Brown, D. D.
    Byer, R.
    Cao, H.
    Constancio, M.
    Cooper, S.
    Corbitt, T.
    Coyne, D.
    Cumming, A.
    Daw, E.
    deRosa, R.
    Eddolls, G.
    Eichholz, J.
    Evans, M.
    Fejer, M.
    Ferreira, E. C.
    Freise, A.
    Frolov, V. V.
    Gras, S.
    Green, A.
    Grote, H.
    Gustafson, E.
    Hall, E. D.
    Hammond, G.
    Harms, J.
    Harry, G.
    Haughian, K.
    Heinert, D.
    Heintze, M.
    Hellman, F.
    Hennig, J.
    Hennig, M.
    Hild, S.
    Hough, J.
    Johnson, W.
    Karnai, B.
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (16)
  • [9] Polarization Sagnac interferometer with postmodulation for gravitational-wave detection
    Beyersdorf, PT
    Fejer, MM
    Byer, RL
    OPTICS LETTERS, 1999, 24 (16) : 1112 - 1114
  • [10] Multiresolution techniques for the detection of gravitational-wave bursts
    Chatterji, S
    Blackburn, L
    Martin, G
    Katsavounidis, E
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (20) : S1809 - S1818