Abelian covers of graphs and maps between outer automorphism groups of free groups

被引:0
作者
Martin R. Bridson
Karen Vogtmann
机构
[1] Mathematical Institute,Department of Mathematics
[2] Cornell University,undefined
来源
Mathematische Annalen | 2012年 / 353卷
关键词
20F65; 20F28; 53C24; 57S25;
D O I
暂无
中图分类号
学科分类号
摘要
We explore the existence of homomorphisms between outer automorphism groups of free groups Out(Fn) → Out(Fm). We prove that if n > 8 is even and n ≠ m ≤ 2n, or n is odd and n ≠ m ≤ 2n − 2, then all such homomorphisms have finite image; in fact they factor through det : \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Out}(F_n) \to \mathbb{Z}/2}$$\end{document} . In contrast, if m = rn(n − 1) + 1 with r coprime to (n − 1), then there exists an embedding \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Out}(F_n) \hookrightarrow {\rm Out}(F_m)}$$\end{document} . In order to prove this last statement, we determine when the action of Out(Fn) by homotopy equivalences on a graph of genus n can be lifted to an action on a normal covering with abelian Galois group.
引用
收藏
页码:1069 / 1102
页数:33
相关论文
共 31 条
[1]  
Aramayona J.(2009)Injections of mapping class groups Geom. Topol. 13 2523-2541
[2]  
Leininger C.(2002)On the embedding of the outer automorphism group Out( Algebra Logika 41 123-129
[3]  
Souto J.(2001)) of a free group of rank Topol. Appl. 110 21-24
[4]  
Bogopolski O.V.(2000) into the group Out( J. Algebra 229 785-792
[5]  
Puga D.V.(2003)) for Bull. Lond. Math. Soc. 35 785-792
[6]  
Bridson M.R.(2011) >  Comment Math. Helv. 86 73-90
[7]  
Farb B.(1986)A remark about actions of lattices on free groups, in Geometric topology and geometric group theory (Milwaukee WI 1997) Invent. Math. 84 91-119
[8]  
Bridson M.R.(1984)Automorphisms of automorphism groups of free groups J. Pure Appl. Algebra 33 269-279
[9]  
Vogtmann K.(2004)Homomorphisms from automorphism groups of free groups Algebr. Geom. Topol. 4 1253-1272
[10]  
Bridson M.R.(2006)Actions of automorphism groups of free groups on homology spheres and acyclic manifolds Algebr. Geom. Topol. 6 573-579