Simulation and Analysis of the Properties of Linear Structures in the Mass Distribution of Nuclear Reaction Products by Machine Learning Methods

被引:0
|
作者
G. A. Ososkov
Yu. V. Pyatkov
M. O. Rudenko
机构
[1] Joint Institute for Nuclear Research,
[2] National Research Nuclear University Moscow Engineering Physics Institute,undefined
来源
Physics of Particles and Nuclei Letters | 2021年 / 18卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:559 / 569
页数:10
相关论文
共 50 条
  • [1] Simulation and Analysis of the Properties of Linear Structures in the Mass Distribution of Nuclear Reaction Products by Machine Learning Methods
    Ososkov, G. A.
    Pyatkov, Yu, V
    Rudenko, M. O.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2021, 18 (05) : 559 - 569
  • [2] INSTRUMENT FOR MASS ANALYSIS OF CHARGED NUCLEAR-REACTION PRODUCTS
    DOLINOV, VK
    ZAZULIN, VS
    NIYAKII, SF
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES-USSR, 1969, (01): : 58 - +
  • [3] Analysis of car crash simulation data with nonlinear machine learning methods
    Bohn, Bastian
    Garcke, Jochen
    Iza-Teran, Rodrigo
    Paprotny, Alexander
    Peherstorfer, Benjamin
    Schepsmeier, Ulf
    Thole, Clemens-August
    2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 : 621 - 630
  • [4] Machine-Learning Methods for Earthquake Ground Motion Analysis and Simulation
    Alimoradi, Arzhang
    Beck, James L.
    JOURNAL OF ENGINEERING MECHANICS, 2015, 141 (04)
  • [5] Affinity methods for purification of DNA sequencing reaction products for mass spectrometric analysis
    Chou, CW
    Bingham, SE
    Williams, P
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 1996, 10 (11) : 1410 - 1414
  • [6] Applying machine learning methods for the analysis of two-dimensional mass spectra
    Gao, Z.
    Solders, A.
    Al-Adili, A.
    Beliuskina, O.
    Eronen, T.
    Kankainen, A.
    Lantz, M.
    Moore, I. D.
    Nesterenko, D. A.
    Penttila, H.
    Pomp, S.
    Sjostrand, H.
    EUROPEAN PHYSICAL JOURNAL A, 2023, 59 (07):
  • [7] Applying machine learning methods for the analysis of two-dimensional mass spectra
    Z. Gao
    A. Solders
    A. Al-Adili
    O. Beliuskina
    T. Eronen
    A. Kankainen
    M. Lantz
    I. D. Moore
    D. A. Nesterenko
    H. Penttilä
    S. Pomp
    H. Sjöstrand
    The European Physical Journal A, 59
  • [8] Methods of machine learning for the analysis of cosmic rays mass composition with the KASCADE experiment data
    Kuznetsov, M. Y.
    Petrov, N. A.
    Plokhikha, I. A.
    Sotnikova, V. V.
    JOURNAL OF INSTRUMENTATION, 2024, 19 (01)
  • [9] Equivalence analysis of simulation data and operation data of nuclear power plant based on machine learning
    Li Xiangyu
    Cheng Kun
    Huang Tao
    Tan Sichao
    ANNALS OF NUCLEAR ENERGY, 2021, 163 (163)
  • [10] Machine Learning Methods Analysis of Preceding Factors Affecting Behavioral Intentions to Purchase Reduced Plastic Products
    Villanueva, David Jericho B.
    Ong, Ardvin Kester S.
    German, Josephine D.
    SUSTAINABILITY, 2024, 16 (07)