Bounds on Initial Coefficients for a Certain New Subclass of Bi-univalent Functions by Means of Faber Polynomial Expansions

被引:0
|
作者
F. Müge Sakar
S. Melike Aydoğan
机构
[1] Batman University,Department of Business Administration
[2] Istanbul Technical University,Department of Mathematics
来源
Mathematics in Computer Science | 2019年 / 13卷
关键词
Analytic functions; Univalent functions; Bi-univalent functions; Faber polynomial expansions; 30C45; 30C50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a new subclass TΣ(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}_{\varSigma }(\mu )$$\end{document} of bi univalent functions belong to Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document} in the open unit disc U=z:z∈Cand|z|<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {U}} =\left\{ z\, :\,\,z\in {\mathcal {C}}\,\,and \,\, |z| <1\right\} $$\end{document}. Then, we use the concepts of Faber polynomial expansions to find upper bound for the general coefficient of such functions belongs to the defined class. Further, for the functions in this subclass we obtain bound on first three coefficients |a2|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|a_{2}|$$\end{document}, |a3|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|a_{3}|$$\end{document} and |a4|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|a_{4}|$$\end{document}. We hope that this paper will inspire future researchers in applying our approach to other related problems.
引用
收藏
页码:441 / 447
页数:6
相关论文
共 50 条
  • [31] Coefficient Bounds for a Certain Class of Analytic and Bi-Univalent Functions
    Srivastava, H. M.
    Eker, Sevtap Sumer
    Ali, Rosihan M.
    FILOMAT, 2015, 29 (08) : 1839 - 1845
  • [32] Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial
    El-Deeb, Sheza M.
    Murugusundaramoorthy, Gangadharan
    Vijaya, Kaliyappan
    Alburaikan, Alhanouf
    AIMS MATHEMATICS, 2021, 7 (02): : 2989 - 3005
  • [33] Initial coefficient bounds for a subclass of m-old symmetric bi-univalent functions
    Srivastava, H. M.
    Sivasubramanianz, S.
    Sivakurnar, R.
    TBILISI MATHEMATICAL JOURNAL, 2014, 7 (02): : 1 - 10
  • [34] COEFFICIENT BOUNDS FOR A GENERAL SUBCLASS OF BI-UNIVALENT FUNCTIONS
    Altinkaya, Sahsene
    Yalcin, Sibel
    MATEMATICHE, 2016, 71 (01): : 89 - 97
  • [35] Initial Coefficient Bounds for a General Class of Bi-Univalent Functions
    Orhan, H.
    Magesh, N.
    Balaji, V. K.
    FILOMAT, 2015, 29 (06) : 1259 - 1267
  • [36] FABER POLYNOMIAL COEFFICIENT ESTIMATES FOR SUBCLASS OF BI-UNIVALENT FUNCTIONS DEFINED BY QUASI-SUBORDINATE
    Zireh, Ahmad
    Adegani, Ebrahim Analouei
    Bidkham, Mahmood
    MATHEMATICA SLOVACA, 2018, 68 (02) : 369 - 378
  • [37] Coefficient Bounds for a Certain Subclass of Bi-Univalent Functions Associated with Lucas-Balancing Polynomials
    Hussen, Abdulmtalb
    Illafe, Mohamed
    MATHEMATICS, 2023, 11 (24)
  • [38] Coefficient Estimation Utilizing the Faber Polynomial for a Subfamily of Bi-Univalent Functions
    Alsoboh, Abdullah
    Amourah, Ala
    Sakar, Fethiye Muge
    Ogilat, Osama
    Gharib, Gharib Mousa
    Zomot, Nasser
    AXIOMS, 2023, 12 (06)
  • [39] Bounds for a new subclass of bi-univalent functions subordinate to the Fibonacci numbers
    Altinkaya, Sahsene
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (02) : 553 - 560
  • [40] BOUNDS FOR INITIAL MACLAURIN COEFFICIENTS FOR A NEW SUBCLASSES OF ANALYTIC AND M-FOLD SYMMETRIC BI-UNIVALENT FUNCTIONS
    Wanas, Abbas Kareem
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (02): : 305 - 311